2023. 10. 9 CAS-JSPS-IBS CTPU-CGA workshop @ Prague

Applications of Wave-Optical Weak Lensing of Gravitational Wave

Han Gil Choi Institute for Basic Science CTPU-CGA

Based on

"Small-scale shear: peeling off diffuse subhalos with gravitational waves"
 Han Gil Choi, Chanung Park and Sunghoon Jung, Phys. Rev. D 104, 063001 (2021)

1. Probing small dark matter halos with weak diffractive lensing

2. Probing $P_m(k)$ through combining weak lensing events

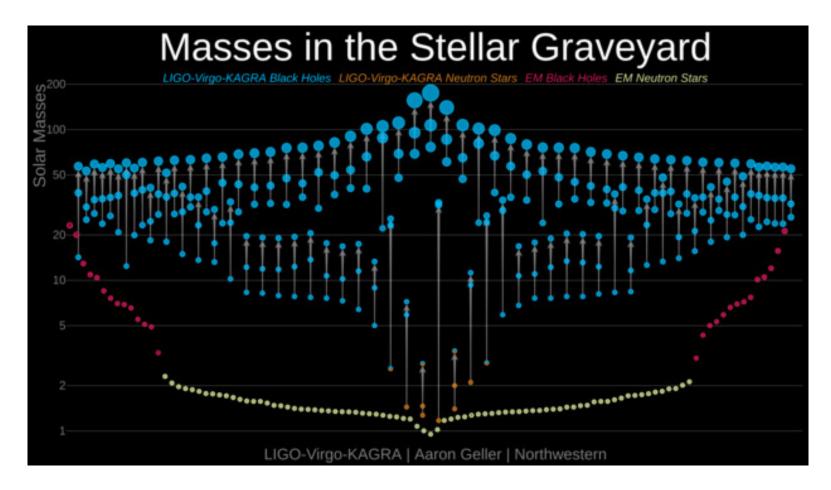
Probing small dark matter halos with weak diffractive lensing

Based on "Small-scale shear: peeling off diffuse subhalos with gravitational waves"

Han Gil Choi, Chanung Park and Sunghoon Jung, Phys. Rev. D 104, 063001 (2021)

Motivations – GW

GW can be used to probe dark universe By Gravitational lensing of GW(GW lensing)



Motivations - GL

- Gravitational Lensing
 - Strong lensing
 - Weak lensing

Credit :NASA,ESA

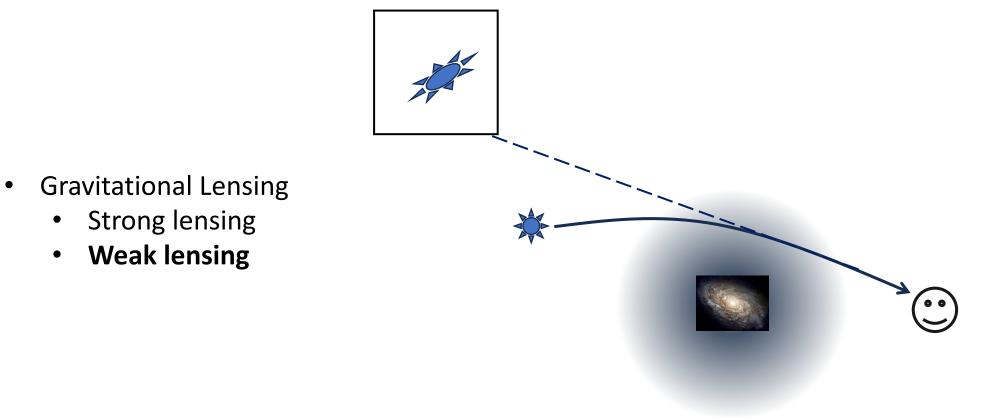
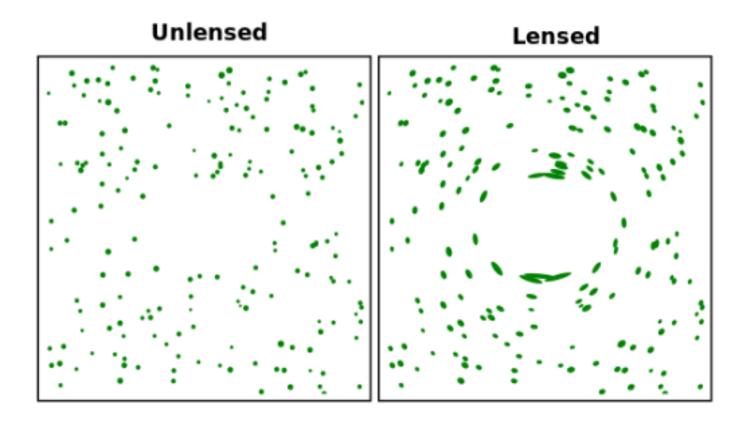


Image deformation

∝ Line-of-Sight mass density(Convergence) & Tidal effect(Shear)

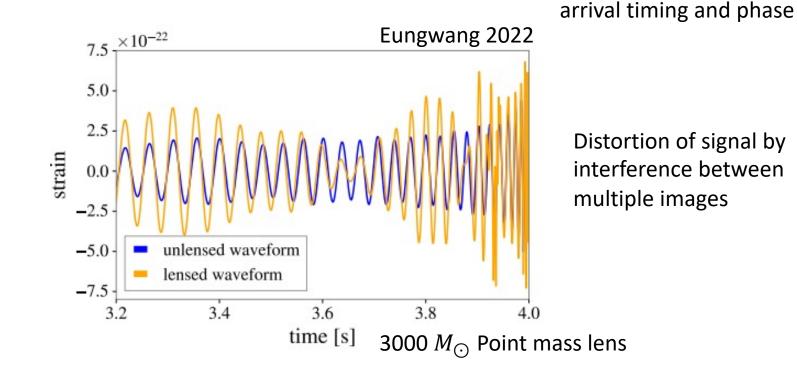
However, Single source does not give any information – Unknown intrinsic properties

Many Sources \rightarrow Field of convergence & shear \rightarrow Lens profile!



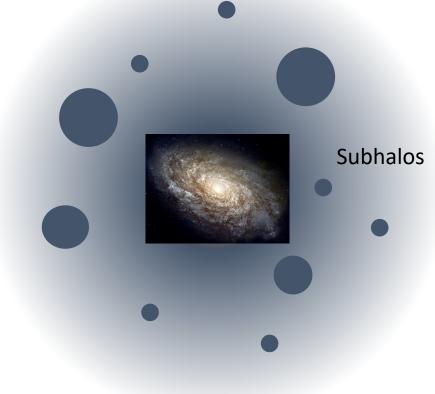
Motivations - GL

• Strong GW lensing has been used to probe compact lens objects (ex. black holes) $h_L(t) = h_1(t) + h_2(t) + \cdots$ Similar GWs with different



Motivations – Dark matter halo

- Can we detect more diffuse lens object like **Dark matter halo**?
- Small Dark matter halo can give a hint on dark matter properties.
- Indirect evidence of small dark matter (sub)halo
 - $M_{\rm sub} > 10^7 M_{\odot}$ (Nadler 2021)
- We want to lower the limit by GW lensing.



Motivations – Wave optics

- However, small halos below M $\leq 10^6 M_{\odot}$ are **too diffuse**, they produce only **weak** lensing. $h_L(t) = h_1(t)$
- Effects of weak lensing in **Geometric optics** calculation

$$h_L(t) = \sqrt{\mu}h(t-\tau)$$

- Amplification : **unobservable** unless we know the exact distance to the source
- Time-delay : **unobservable** unless we know the exact GW emission timing
- Only **Diffraction** gives observables.
 - We need to solve the wave equation of GW.

Wave optics of GW

• Background metric in weak gravity

$$\begin{split} ds^2 &= -(1+2U(\mathbf{x}))dt^2 + (1-2U(\mathbf{x}))d\mathbf{x}^2 = g^{(B)}_{\mu\nu}dx^{\mu}dx^{\nu} \\ \nabla^2 U &= 4\pi\rho \end{split}$$

• Propagation of GW (with appropriate gauge fixing)

$$g_{\mu\nu} = g^{(B)}_{\mu\nu} + h_{\mu\nu} \qquad \Box^{(B)} h_{\mu\nu} + 2R^{(B)}_{\gamma\mu\delta\nu} h^{\gamma\delta} = 0$$

• Wavelength << Background Curvature length scale

$$\Box^{(B)}h_{\mu\nu}\simeq 0$$

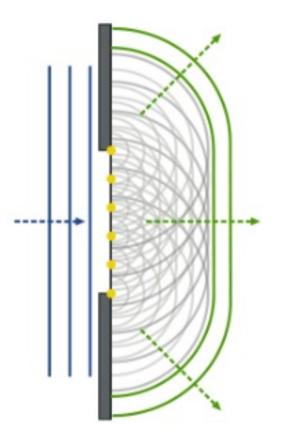
• Negligible changes(~U) in the polarizations

$$h_{\mu\nu}(t,\mathbf{x}) \simeq \phi(t,\mathbf{x})e_{\mu\nu}$$

$$(
abla^2+w^2)\phi(w,\mathbf{x})=4w^2U(\mathbf{x})\phi(w,\mathbf{x})$$
 * Fourier transform

Wave optics of GW

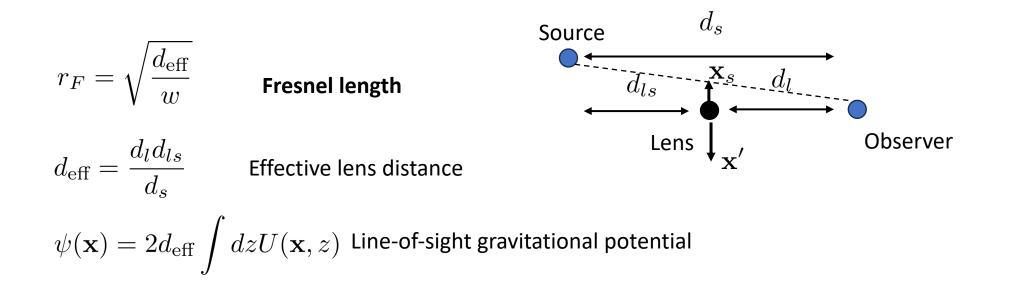
- The solution is given by Kirchhoff's diffraction formula
 - Huygens' principle on lens plane cf) Diffraction by a single Slit



Wave optics of GW

- The solution is given by Kirchhoff's diffraction formula
 - Huygens' principle on lens plane

$$\frac{\phi(w;\mathbf{x}_o)}{\phi_0(w;\mathbf{x}_o)} = F(w;\mathbf{x}_s) = \frac{1}{2\pi i} \int \frac{dx'^2}{r_F^2(w)} e^{i\left[\frac{1}{2}|\mathbf{x}'-\mathbf{x}_s|^2 - \psi(\mathbf{x}')\right]/r_F^2(w)}$$



Weak Diffractive lensing

Wave optics in Diffraction regime: $\mathbf{x}_s \ll r_F$

$$\Rightarrow F(w; \mathbf{x}_s) \propto \int dx'^2 \exp\left[i\left[\frac{1}{2}|\mathbf{x}|^2 - \psi(\mathbf{x})\right] \frac{1}{r_F^2}\right]$$

Weak lensing approximation: linear in ψ & low slope profile

 $F(w) \simeq 1 + \overline{\kappa}(e^{i\frac{\pi}{4}}r_F)$ Aperture mean convergence

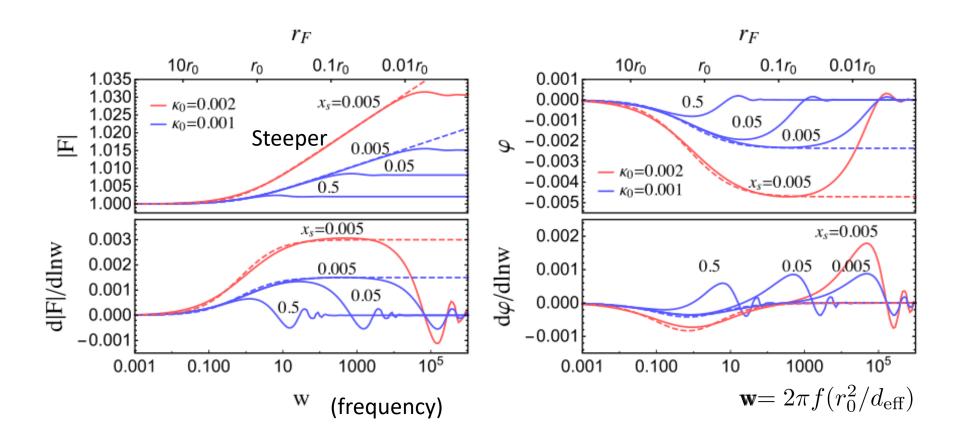
Frequency dependency is observable of diffraction:

$${dF(w)\over d\ln w}\simeq \gamma_t(e^{i{\pi\over 4}}r_F)$$
 (Tangential) Shear

F(w) is directly related to lensing profile at Fresnel length!

Weak Diffractive lensing

- F(w) of Navarro-Frenk-White(NFW) profile. Numerical vs Analytic
- Good matches when $r_F > x_s$
- The slope of F(w) follows the slope of the DM halo profile.



Detection of Diffractive lensing

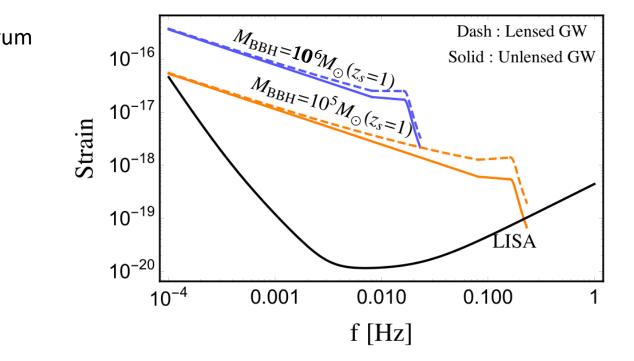
Multiple frequencies replace multiple background sources

Gaussian Noise, Small detector noise, Ignore correlations with source intrinsic parameters

log-likelihood
$$\simeq \min_{A,\phi,t} 2 \sum_{f_j} \frac{|F(f_j) - Ae^{i\phi}e^{2\pi i f_j t}|^2 |h_0(f_j)|^2}{S_n(f_j)} \Delta f$$

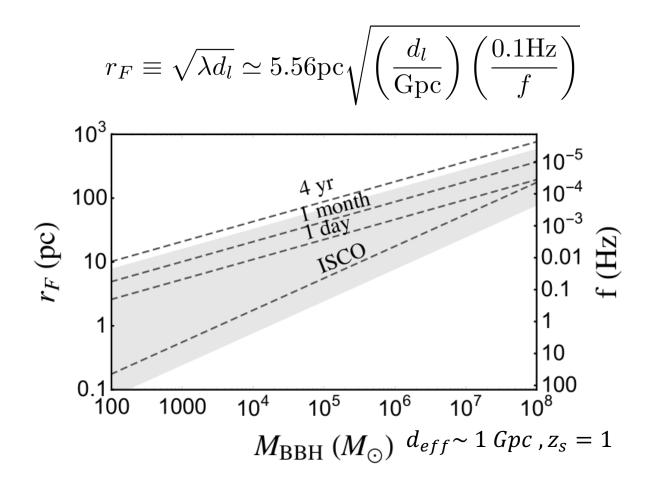
Lensing by Singular Isothermal sphere lens ($M = 10^5 M_{\odot}$, $z_l = 0.35$)

Ex) spectrum change



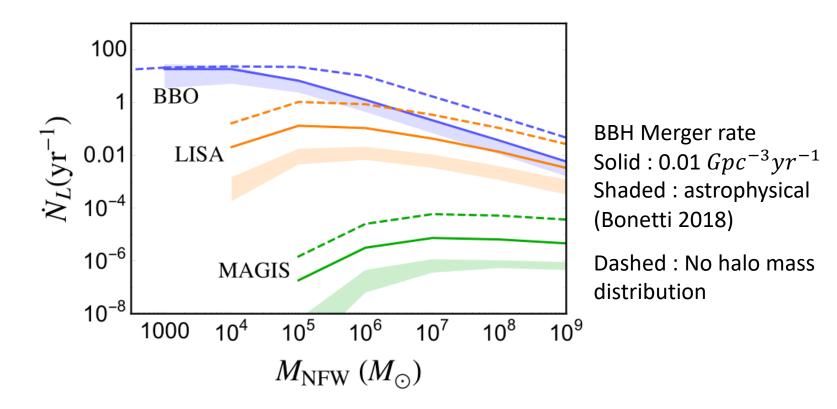
Detection of Diffractive lensing

• Small DM halo with 10 pc length scale can be probed by Massive BBH mergers



Prospects

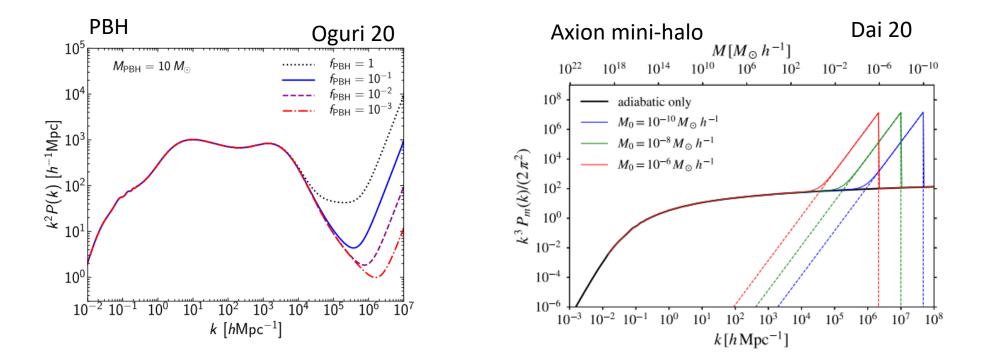
- Big Bang Observer (BBO) can detect (**CDM**) $10^3 M_{\odot}$ halo more than 10 per year.
 - The others are less promising due to strong detector noise.
- The prospects highly depends on massive BBH merger population and DM halo population.



Probing $P_m(k)$ through combining weak lensing events

Work in progress

- Some dark matter models predict shot noise dominance $P_{\text{shot}}(k) = \frac{f^2}{\overline{n}}$ \overline{n} : number density at small scale(< 1 pc) f: mass fraction
 - Primordial black hole, Axion mini halo ...



- In the high frequency detectors, GW lensing events are rare(probability \leq 0.001).
- Lens model dependent (point mass, halo, etc.)
- Instead, How about combine **all GW events**?
 - Lens effects (= gravitational potentials) become stochastic.
 - The stochastic nature is related to **matter power spectrum**.
 - LIGO (ET) will observe >100 (10^5) GW events per year.
 - cf. Stochastic Gravitational Wave Background
 - accumulation of stochastic detector correlations
- LIGO and ET are sensitive to BBH merger at 100 Hz

Y

• Ultra small scale!

$$r_F \propto \sqrt{\lambda d_l} \simeq 0.18 \mathrm{pc} \sqrt{\left(\frac{d_l}{\mathrm{Gpc}}\right) \left(\frac{100 \mathrm{Hz}}{f}\right)}$$

- Strain data consist of detector noise, GW signal, and lensing signal $d(f) = n(f) + h_0(f) + \delta F \cdot h_0(f)$
- Lensing effects of all Line-of-Sight matter inhomogeneity

$$\delta F(f) = \frac{4\pi f}{i} \int_0^{d_s} dx \int \frac{d^3 k}{(2\pi)^3} \tilde{U}(\mathbf{k}) e^{-ik_{||}(d_s - x)} e^{-i\frac{k^2 x (d_s - x)}{4\pi f d_s}}$$

• The lensing amplification factor has zero mean. $\langle \delta F \rangle = 0$

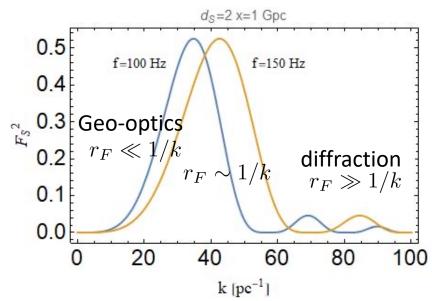
• The covariance of the residuals is related to the matter power spectrum

$$\left\langle (d^*(f_1) - h_0^*(f_1))(d(f_2) - h_0(f_2)) \right\rangle = \left\langle (\delta F \cdot h_0(f_1))^* \delta F \cdot h_0(f_2) \right\rangle \propto P_m h_0^2$$

*The stationary detector noise is assumed

ex) GW phase fluctuation
$$= \int_0^{d_s} dx W^2(x) \int \frac{dkk}{2\pi} P_m(k) F_S^2(k,x)$$
$$W(x) \equiv x \left(1 - \frac{x}{d_s}\right) \qquad F_S(k,x) = \frac{\cos(kr_F)^2/2 - 1}{(kr_F)^2/2}$$

- The fluctuations exists only when $r_F \sim 1/k$.
- There is **no fluctuation** for geo-optics limit ($r_F \ll 1/k$) and (Oguri 20) diffraction limit ($r_F \gg 1/k$).



Detecting lensing signal

- We estimate the Bayes factor
 - Lensing vs no lensing Hypothesis

$$B \equiv \frac{\int d\theta \prod_i dU_i p(d|h_0(\theta), \{U_i\}, H_1) \pi(\theta, \{U_i\}|H_1)}{\int d\theta p(d|h_0(\theta), H_0) \pi(\theta|H_0)}$$

 $B \equiv \frac{\mathcal{L}_{\text{lensing}}}{2}$

 $\mathcal{L}_{no \ lensing}$

• Expectation value of the InB is zero for Geo. limit and diffraction limit

$$\langle \ln B \rangle \propto \int_{0}^{d_{s}} dx_{1} W^{2}(x_{1}) \int \frac{dk_{1}k_{1}}{2\pi} P_{m}(x_{1}, k_{1})$$

$$\times \int_{0}^{d_{s}} dx_{2} W^{2}(x_{2}) \int \frac{dk_{2}k_{2}}{2\pi} P_{m}(x_{2}, k_{2})$$

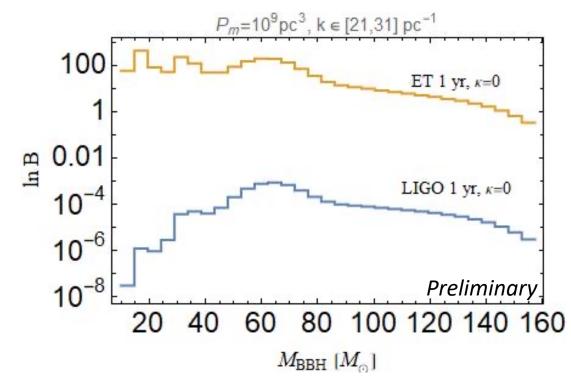
$$\times \rho_{0}^{4} \left[\operatorname{cov}(F_{S1}, F_{S2}) - \sigma_{w}^{-2} \operatorname{cov}(w, F_{S1}) \operatorname{cov}(w, F_{S2}) \right]^{2}$$

$$\operatorname{cov}(A,B) = \overline{AB} - \overline{A}\overline{B} \qquad F_{S1,2} \equiv F_S(k_{1,2}, x_{1,2})$$

 $\mathcal{L} \propto e^{-2\int df |d(f) - h(f)|^2 / S_n(f)}$

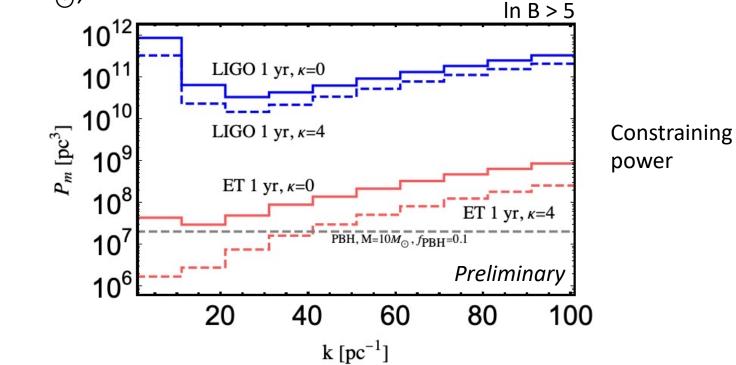
Detecting lensing signal

- We can combine all GW data : $\ln B = \sum_{i} \ln B_{i}$
- We consider stellar mass BBH merger events
 - * we assume the *merger rate* distribution from LIGO-VIRGO O3 data
- In LIGO, the contribution mainly comes from $M_{BBH} \sim 60 M_{\odot}$ while in ET, $M_{BBH} \sim 10 60 M_{\odot}$



Prospects

- We assume $P_m(k, z) = P_m^0(k)(1 + z)^{\kappa 3}$
 - P_m is constant within the bins
- Best constraint is at
 - LIGO : $k = 30 \ pc^{-1}$, ET : $k = 10 \ pc^{-1}$
- 1yr observation with ET can reach the PBH shot noise level !
 - PBH mass =10 M_{\odot} , mass fraction = 0.1



Summary

- 1. Diffractive lensing is controlled by the Fresnel length r_F which is frequency and distance dependent.
- 2. r_F of GW from massive BBHs can be few parsecs. Therefore, light sub halos can be detected through diffractive lensing.
- 3. Powerful mid-band GW detector like BBO can detect few tens of $10^{3\sim4} M_{\odot}$ DM halo per year.
- 4. Combining many GW data of LIGO and ET, the matter power spectrum at sub-parsec scale can be probed.