Curing ghosts with inequality constraints

Pavel Jiroušek

CAS-JSPS-IBS CTPU-CGA WORKSHOP - Prague

October 13, 2023

Work in progress with Alex Vikman

coming to arXiv (hopefully) in 2023

イロト イ団ト イヨト イヨト

2

Spoilers

- There is significant interest in higher derivative theories in modified gravity
- $\bullet~{\sf Extra}$ derivatives $\rightarrow~{\sf extra}$ degrees of freedom
- Hamiltonian becomes unbounded from bellow

$$H \not\geq E_0$$

- Healthy systems can siphon arbitrary amount of energy from this system \rightarrow instability?
- Inequality constraints A. Frolov, V. Frolov, 2304.12179

$$\Phi = 0 \to \Phi \ge 0$$

• Can we use this to fix

 $H \ge E_0$

- How to do this?
- What does it mean for the system?

Inequality constraint

Normal constraint

$$\Phi(q,\dot{q},\dots)=0$$

Inequality constraint

$$\Phi(q, \dot{q}, \dots) \ge 0$$

• Such a constraint can be imposed by the following ordinary Lagrange constraint

$$L = L_0(q, \dot{q}, \dots) + \lambda \left(\Phi(q, \dot{q}, \dots) - \xi^2 \right)$$

æ

Inequality constraints

• Equations of motion for \boldsymbol{q}

$$\frac{\delta L_0}{\delta q} + \lambda \frac{\delta \Phi}{\delta q} = 0$$

• The variation with respect to λ

$$\Phi(q, \dot{q}, \dots) = \xi^2$$

• The variation with respect to $\boldsymbol{\xi}$

$$\lambda \xi = 0$$

this has two branches of solution

$$\lambda = 0$$
, and $\xi = 0$

Subcritical phase

• The subcritical phase

$$\lambda = 0$$

• The constraint determines ξ^2

$$\Phi(q, \dot{q}, \dots) = \xi^2$$

this is only possible when

$$\Phi(q,\dot{q},\dots)\geq 0$$

• For $\lambda=0$ there is no modification of the original evolution

$$\frac{\delta L_0}{\delta q} = 0$$

æ

Supercritical phase

• Supercritical phase

$$\xi = 0$$

• The constraint is saturated

$$\Phi(q,\dot{q},\dots)=0$$

• The system behaves as if the constraint $\Phi = 0$ is enforced directly

$$\frac{\delta L_0}{\delta q} + \lambda \frac{\delta \Phi}{\delta q} = 0$$

æ

• The original evolution may take us from

$$\Phi > 0$$
 to $\Phi < 0$

the second part is now prohibited, but we have a possibility to 'escape' to the supercritical phase

- Is this transition smooth? No
- In the subcritical phase $\dot{\Phi}=2\xi\dot{\xi}\neq 0$ and $\dot{\lambda}=0$
- In the supercritical phase $\dot{\xi}=0$ and $\dot{\lambda}\neq 0$
- Generally the transition is discontinuous in these velocities!

イロト イボト イヨト イヨ

Compatibility of the constraint

- Continuity of the transition
- For example take the system

$$L = \frac{\dot{q}^2}{2} - \frac{q^2}{2} + \lambda \left(q - q_c - \xi^2 \right)$$

• The subcritical phase of the evolution is just harmonic oscillator for $q(t)>q_c$

$$q(t) = q_0 \cos(t - t_0)$$

along with

$$\lambda = 0$$
, $\xi^2 = q - q_c$, $p = -q_0 \sin(t - t_0)$

• The supercritical phase gives

$$q=q_c\ ,\quad \xi=0\ ,\quad \lambda=q_c\ ,\quad p=0$$

- The transition is discontinuous in the phase space
- The reason for this is because the two branches have different number of degrees of freedom! PJ, Shimada, Yamaguchi, Vikman, 2208.05951
- This will haunt us later on

Pavel Jiroušek

Ostrogradsky ghost

• If we have a higher derivative Lagrangian

$$L = L(\ddot{q}, \dot{q}, q)$$

then we can introduce the following generalization of the Legandre map

$$P = \frac{\partial L}{\partial \dot{q}} (\ddot{q}, \dot{q}, q) , \qquad Q = \dot{q} ,$$
$$p = \frac{\partial L}{\partial \dot{q}} - \frac{d}{dt} \frac{\partial L}{\partial \ddot{q}} , \qquad q = q$$

• The Ostrogradsky Hamiltonian is then

$$H = p\dot{q} + P\dot{Q} - L(\ddot{q}, \dot{q}, q)$$
$$= pQ + H_0(P, Q, q)$$

 ${\ensuremath{\, \bullet }}$ The first term is necessarily unbounded in the momentum p

• Possible interactions are assumed to be part of H₀

Pavel Jiroušek

< ロ > < 同 > < 回 > < 回 >

Curing the ghost

• Let us apply the inequality constraint on the problematic term

$$H \rightarrow pQ + H_0(P, Q, q) + \lambda \left(pQ - E_0 - \xi^2 \right)$$

This should implement the inequality

 $pQ \ge E_0$

• To enforce the constraints, we impose two primary constraints

$$\pi_{\lambda} = 0$$
$$\pi_{\xi} = 0$$

and include them in the Hamiltonian

$$H \to pQ + H_0(P, Q, q) + \lambda \left(pQ - E_0 - \xi^2 \right) + \alpha \pi_\lambda + \beta \pi_\xi$$

Curing the ghost - action

• The first order action

$$S = \int dt \left[p\dot{q} + P\dot{Q} - pQ - H_0(P, Q, q) - \lambda \left(pQ - E_0 - \xi^2 \right) \right]$$

which is varied with respect to p,q,P,Q,λ,ξ

Note that p is a Lagrange multiplier enforcing

$$Q = \frac{\dot{q}}{1+\lambda}$$

• Integrate out p,P,Q,α,β

$$S = \int dt \left[L\left(\frac{d}{dt}\frac{\dot{q}}{1+\lambda}, \frac{\dot{q}}{1+\lambda}, q\right) + \lambda(\xi^2 + E_0) \right]$$

Curing the ghost - action

Lorentz non-covariant modification

$$L(\ddot{\phi}, \dot{\phi}, \partial_i^2 \phi, \partial_i \phi, \phi) \to L\left(\frac{d}{dt}\frac{\dot{\phi}}{1+\lambda}, \frac{\dot{\phi}}{1+\lambda}, \partial_i^2 \phi, \partial_i \phi, \phi\right) + \lambda\left(\xi^2 + E_0\right)$$

The subcritical phase is completely Lorentz covariant if the original wasSymmetry breaking in the supercritical phase

Curing the ghost - dynamics

• Consistency of the primary constraints

$$\dot{\pi}_{\lambda} = \{\pi_{\lambda}, H\} = \xi^{2} + E_{0} - pQ = 0$$
$$\dot{\pi}_{\xi} = \{\pi_{\xi}, H\} = -2\lambda\xi = 0$$

• The second condition has two branches

$\lambda = 0 ,$	subcritical phase
$\xi = 0 ,$	supercritical phase

Subcritical phase consistency

$$\dot{\lambda} = \{\lambda, H\} = \alpha = 0$$
$$\frac{d}{dt} \left(\xi^2 + E_0 - pQ\right) = \left\{\xi^2 + E_0 - pQ, H\right\} = p \frac{\partial H_0}{\partial P} + 2\beta\xi = 0$$

there are no further constraints

• There are two degrees of freedom

14/23

Curing the ghost - dynamics

• Supercritical phase consistency

$$\frac{d}{dt}(pQ - E_0) = \{pQ - E_0, H\} = \frac{\partial H_0}{\partial P}p - \frac{\partial H_0}{\partial q}Q = 0$$
$$\dot{\xi} = \{\xi, H\} = \beta = 0$$

 \rightarrow New tertiary constraint

• Consistency

$$\left\{\frac{\partial H_0}{\partial P}p - \frac{\partial H_0}{\partial q}Q, H\right\} = (1+\lambda)\left\{\left\{pQ, H_0\right\}, pQ\right\} + \left\{\frac{\partial H_0}{\partial P}p - \frac{\partial H_0}{\partial q}Q, H_0\right\} = 0$$

• If $\{\{pQ, H_0\}, pQ\} \neq 0$ we can solve for λ

$$\lambda = \dots$$

we do not get any additional constraints

• There is now one degree of freedom!

Pavel Jiroušek

э

イロト 不得 トイヨト イヨト

Curing the ghost - transition

- ${\, \bullet \,}$ As in the previous case \rightarrow discontinuity in the transition
- The subcritical branch has two degrees of freedom and therefore 4 initial conditions
- $\bullet\,$ The evolution in the subcritical phase 'lands' on the constraints surface $pQ=E_0$

 \rightarrow 3 free parameters

• The evolution on this constraint can only be consistent when

$$\frac{\partial H_0}{\partial P}p - \frac{\partial H_0}{\partial q}Q = 0$$

- Forcing the transition we have to project to this constraint.
- $(q,Q)\sim (q,\dot{q})$ continuous
- $(P,p) \sim (\ddot{q}, \, \ddot{q})$ discontinuous

イロト 不得 トイヨト イヨト

Fixing the transition

• We can fix this by modifying the procedure

$$H \to H + \lambda \left(pQ + \{\Psi, H\} - E_0 - \xi^2 \right) + \alpha (\pi_\lambda - \Psi) + \beta \pi_\xi$$

• Primary constraint

$$\pi_{\lambda} = \Psi(p, q, P, Q)$$
$$\pi_{\xi} = 0$$

The consistency of primary constraint

$$\{\pi_{\lambda} - \Psi, H\} = \xi^{2} + E_{0} - pQ - \lambda \{pQ - \{\Psi, H\}, \Psi\} + 0 \cdot \{\Psi, H\} = 0$$
$$\{\pi_{\xi}, H\} = -2\lambda\xi = 0$$

• The second condition has two branches

$$\lambda = 0 \ , \qquad \qquad \xi = 0$$

Pavel Jiroušek

æ

Fixing the transition

• Subcritical phase $\lambda=0$

$$pQ - E_0 = \xi^2 \implies pQ - E_0 \ge 0$$

• Supercritical branch $\xi = 0$

$$\lambda = \frac{pQ - E_0}{\{pQ - \{\Psi, H\}, \Psi\}}$$

• The consistency in this phase now gives

$$\{E_0 - pQ + \lambda\{\{\Psi, H\}, \Psi\}, H\} = \alpha \dots = 0$$

No additional constraints

• There are four degrees of freedom

Fixing the transition

• The Hamiltonian in the supercritical phase

$$H|_{sup} = H_0 + pQ\left(1 + \frac{pQ - E_0}{\{pQ - \{\Psi, H\}, \Psi\}}\right)$$

- Is this bounded from bellow?
- ${\, \bullet \, }$ This gives a condition on Ψ

$$pQ\left(1+\frac{pQ-E_{0}}{\left\{pQ-\left\{\Psi,H\right\},\Psi\right\}}\right) \geq \mathcal{E}_{0}$$

• A possible way to achieve this is to have

$$\left\{pQ - \left\{\Psi, H\right\}, \Psi\right\} = 1$$

Example

Suppose

$$H_0 = \bar{H}_0(P,Q) + \frac{q^2}{2}$$

and

$$\Psi = p$$

• With these choices we indeed have

$$\{pQ - \{\Psi, H\}, \Psi\} = -\left\{\left\{p, \frac{q^2}{2}\right\}, p\right\} = 1$$

• The Hamiltonian is then

$$H = \bar{H}_0 + \frac{q^2}{2} + pQ + \lambda \left(pQ + q - E_0 - \xi^2 \right) + \alpha (\pi_\lambda - p) + \beta \pi_\xi$$

• In the supercritical phase

$$H|_{sup} = \bar{H}_0 + \frac{q^2}{2} + pQ + (pQ - E_0)(pQ + q - E_0)$$

Pavel Jiroušek

イロト イ団ト イヨト イヨト

2

Example - Lagrangian

• The above Hamiltonian in general arises from the Lagrangian

$$L = \bar{L}(\ddot{q}, \dot{q}) - \frac{q^2}{2}$$

The first order action

$$S = \int dt \left[p(\dot{q} + \dot{\lambda}) + P\dot{Q} - pQ - \bar{H}_0(P, Q) - \frac{q^2}{2} - \lambda \left(pQ + q - E_0 - \xi^2 \right) \right]$$

• The momentum \boldsymbol{p} is a Lagrange multiplier enforcing

$$Q = \frac{\dot{q} + \dot{\lambda}}{1 + \lambda}$$

Hence the Lagrangian is

$$L = \bar{L}\left(\frac{d}{dt}\frac{\dot{q} + \dot{\lambda}}{1 + \lambda}, \frac{\dot{q} + \dot{\lambda}}{1 + \lambda}\right) - \frac{q^2}{2} + \lambda\left(E_0 + \xi^2 - q\right)$$

Conclusions

- The idea is to bound unbounded (ghosty) Hamiltonians using the inequality constraints
- This can be done using two auxiliary variables (fields) λ and ξ
- The modified system has two phases
 - Subcritical phase no change to the original behavior (up to initial conditions)
 - Supercritical phase changes to the dynamics, Lorentz symmetry breaking
- The transition between the phases is almost guaranteed to be discontinuous in velocities
- The amount of discontinuities depends on the amount of degrees of freedom in the supercritical phase

Thank you for your attention!

Pavel Jiroušek

University of Cape Town

October 13, 2023 23 /

æ