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NLSM wasn’t built in a day

prehistory: Gell-Mann M, Lévy M (’60), Adler (’65), Weinberg (’66),
Susskind, Frye ’69, Ellis ’70 ...

collaboration with J.Trnka and J.Novotny ’13: Soft bootstrap at 10

motivated by amazing discoveries of amplitudes in gauge theories
and gravity (e.g. Parke-Taylor, BCFW) → see Jaroslav talk

we wanted to focus on: Effective field theories

motivated by theoretical considerations → taking something as
simple as possible

very broad subject

focus on low energy dynamics of theories with SSB

leading order, tree-level

strictly massless limit
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Leading order Lagrangian

assume general simple compact Lie group G

we will build a chiral non-linear sigma model, which will correspond
to the spontaneous symmetry breaking (GL ≃ GR ≃ GV ≃ G )

GL × GR → GV

consequence of the symmetry breaking: Goldstone bosons (≡ ϕ)

U = exp
(√

2
i

F
ϕ
)

their dynamics given by a Lagrangian (at leading order)

L =
F 2

4
⟨∂µU∂µU−1⟩

Using structure constants we can define ordered Feynman rule for
the interaction vertices → stripped vertices
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Stripping and ordering

Up to now general group: we didn’t need any property of f abc or t i .
From now on: we will simplify the problem setting G = SU(N).
Simplification due to the completeness relation:

N2−1∑
a=1

⟨Xta⟩⟨taY ⟩ = ⟨XY ⟩ − 1

N
⟨X ⟩⟨Y ⟩

double trace has to cancel out

two vertices are connected via a propagator (δab)

ordering of tai in the final single trace is conserved

The tree graphs built form the stripped vertices and propagators are
decorated with cyclically ordered external momenta.
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G = U(N) – different parametrizations

General form of the parametrization U(ϕ) → f (x)

f (x) =
∞∑
k=0

ukx
k , f (−x)f (x) = 1

“exponential”: fexp = ex

→ wk,n = (−1)k

1+δkn
1

(2n+2)!

(2n+2
k+1

)

“minimal”: fmin = x +
√
1 + x2

→ w2k+1,n = (−1)n

1+δ2k+1,n

(k−1
2

k+1

)(n−k− 3
2

n−k

)

“Cayley” fCaley =
1+x/2
1−x/2

→ wk,n = (−1)k

1+δkn
1
22n

The stripped Feynman rules can be written

V2n+2(si ,j) = (−1)n
(

2

F 2

)n n∑
k=0

wk,n

2n+2∑
i=1

si ,i+k

where si ,j ≡ (pi + pi+1 + . . .+ pj)
2.

5/31



G = U(N) – different parametrizations

General form of the parametrization U(ϕ) → f (x)

f (x) =
∞∑
k=0

ukx
k , f (−x)f (x) = 1

“exponential”: fexp = ex → wk,n = (−1)k

1+δkn
1

(2n+2)!

(2n+2
k+1

)
“minimal”: fmin = x +

√
1 + x2 → w2k+1,n = (−1)n

1+δ2k+1,n

(k−1
2

k+1

)(n−k− 3
2

n−k

)
“Cayley” fCaley =

1+x/2
1−x/2 → wk,n = (−1)k

1+δkn
1
22n

The stripped Feynman rules can be written

V2n+2(si ,j) = (−1)n
(

2

F 2

)n n∑
k=0

wk,n

2n+2∑
i=1

si ,i+k

where si ,j ≡ (pi + pi+1 + . . .+ pj)
2.

5/31



Explicit example: stripped 4pt amplitude

Natural parametrization for diagrammatic calculations: minimal

wmin
2k,n = 0

Thus off-shell and on-shell stripped vertices are equal.

4pt amplitude
2F 2M(1, 2, 3, 4) = −(s1,2 + s2,3)
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Explicit example: stripped 6pt amplitude

4F 4M(1, 2, 3, 4, 5, 6) =

=
(s1,2 + s2,3)(s1,4 + s4,5)

s1,3
+

(s1,4 + s2,5)(s2,3 + s3,4)

s2,4

+
(s1,2 + s2,5)(s3,4 + s4,5)

s3,5
− (s1,2 + s1,4 + s2,3 + s2,5 + s3,4 + s4,5)

This can be rewritten as

4F 4M(1, 2, 3, 4, 5, 6) =
1

2

(s1,2 + s2,3)(s1,4 + s4,5)

s1,3
− s1,2 + cycl ,
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Explicit example: stripped 8pt amplitude

8F 6M(1, 2, 3, 4, 5, 6, 7) =

= −1

2

(s1,2 + s2,3)(s1,4 + s4,7)(s5,6 + s6,7)

s1,3s5,7
− (s1,2 + s2,3)(s1,4 + s4,5)(s6,7 + s7,8)

s1,3s6,8

+
(s1,2 + s2,3)(s4,5 + s4,7 + s5,6 + s5,8 + s6,7 + s7,8)

s1,3
− 2s1,2 −

1

2
s1,4 + cycl
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Explicit example: stripped 10pt amplitude
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Generally: Effective field theories

very broad subject

focus on low energy dynamics of theories with SSB

strictly massless theories

ground state spontaneously breaks a global symmetry of the
underlying theory

G → H

we have Nambu-Goldstone bosons ϕ in the spectrum with

⟨0|Jµ|ϕ⟩ ≠ 0

⇒ the shift symmetry
ϕ → ϕ+ a

⇒ Adler zero, i.e. vanishing of amplitudes in soft limit
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Generally: Effective field theories

Our aim: classification of interesting EFTs

Usual steps:

Symmetry → Lagrangian → Amplitudes → physical quantities

(cross-section, masses,
decay constants, . . . )

Our method: Amplitudology

works done in collaborations with Christoph Bartsch, Johan Bijnens, Taro

Brown, Clifford Cheung, Jiri Novotny, Umut Oktem, Shruti Paranjape, Filip

Preucil, Chia-Hsien Shen, Mikhail Shifman, Mattias Sjö, Jaroslav Trnka, Petr

Vasko, Congkao Wen...
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Amplitudology

Not to be confused with astrology...

well, maybe some similarities:
need for precise data [Tycho Brahe] led to

→ horoscopes [e.g. Kepler for Wellenstein]

Wellenstein’s death by K. Piloty

but more importantly to
→ serious astrophysics [Kepler’s laws]
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Tycho Brahe’s motto

By looking up I see downward

By looking down I see u
pw

ard
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EFT: simplest case

focus on two derivatives: ∂µϕ∂
µϕϕn

Single field is a trivial case → have to consider multi-flavours
ϕ1, ϕ2 . . .

case by case studies: of two, three, . . . flavours

L = 1
2∂µϕ

i∂µϕi+λijkl∂µϕ
i∂µϕjϕkϕl+λi1...l6∂µϕ

i1∂µϕi2ϕi3 . . . ϕi6+. . .

Very complicated generally

Assume some simplification using the group structure

ϕ = ϕaT a

similar to the ‘gluon case’: flavour ordering

Aa1...an =
∑
perm

Tr(T a1 . . .T an)A(p1, . . . pn)
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First example: NLSM

[KK, Novotny, Trnka ’13]

bottom-up analysis, first non-trivial case, the 6pt amplitude:

power-counting:

λ2
4 p

2 1

p2
p2 + λ6 p

2

in order to combine the pole and contact terms we need to consider
some limit. The most natural candidate: we will demand soft limit, i.e.

A → 0, for p → 0

⇒ λ2
4 ∼ λ6 corresponds to NLSM

How to extend it to all orders (n-pt)? → new recursion relations
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New recursion relations: modification of BCFW

[Cheung, KK, Novotny, Shen, Trnka ’15]

The high-energy behaviour forbids a naive Cauchy formula

A(z) ̸= 0 for z → ∞

Can we instead use the soft limit directly?

→ yes!
The standard BCFW not applicable, we propose new shifts:

pi → pi (1− zai ) on all external legs

This leads to a modified Cauchy formula∮
dz

z

A(z)

Πi (1− aiz)σ
= 0

note there are no poles at z = 1/ai (by construction).
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Natural classification: σ and ρ
Generalization of the soft limit:

A(tp1, p2, . . . , pn) = O(tσ), as tp1 → 0

Interaction term
L = ∂mϕn

Then another natural parameter is:

ρ =
m − 2

n − 2
“averaging number of derivatives”

e.g. L = ∂mϕ4 + ∂m̃ϕ6

so these two diagrams can mix if the same ρ
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Non-trivial cases
for: L = ∂mϕn : m < σn

or

σ >
(n − 2)ρ+ 2

n

i.e.

ρ σ at least

0 1

1 2

2 2

3 3

i.e. non-trivial regime for ρ ≤ σ
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First case: ρ = 0 (i.e. two derivatives)

Schematically for a single scalar case

L = 1
2(∂ϕ)

2 +
∑
i

λi
4(∂

2ϕ4) +
∑
i

λi
6(∂

2ϕ6) + . . .

similarly for multi-flavour (ϕi : ϕ1, ϕ2, . . .).
non-trivial case

σ = 1

Outcome:

single scalar: free theory

multiple scalars (with flavour-ordering): non-linear sigma model

n.b. it represents a generalization of [Susskind, Frye ’70], [Ellis, Renner ’70]
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Second case: ρ = 1, σ = 2 (double soft limit)
1. focus on the lowest combination and fix the form:

Lint = c2(∂ϕ · ∂ϕ)2 + c3(∂ϕ · ∂ϕ)3 condition: c3 = 4c42

2. find the symmetry

ϕ → ϕ− bρx
ρ + bρ∂

ρϕϕ (again up to 6pt so far)

3. ansatz of the form

H
HHH

HHHj

��������)

cn(∂ϕ · ∂ϕ)n + cn+1(∂ϕ · ∂ϕ)n∂ϕ · ∂ϕ

4. in order to cancel: 2(n + 1)cn+1 = (2n − 1)cn
i.e. c1 =

1
2 ⇒ c2 =

1
8 , c3 =

1
16 , c4 =

5
128 , . . .
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Second case: ρ = 1, σ = 2 (double soft limit)

4. in order to cancel: 2(n + 1)cn+1 = (2n − 1)cn
i.e. c1 =

1
2 ⇒ c2 =

1
8 , c3 =

1
16 , c4 =

5
128 , . . .

solution:
L = −

√
1− (∂ϕ · ∂ϕ)

This theory known as a scalar part of the Dirac-Born-Infeld [1934] – DBI
action

Scalar field can be seen as a fluctuation of a 4-dim brane in five-dim
Minkowski space

Á

21/31



Third case: ρ = 2, σ = 2 (double soft limit)
Similarly to the previous case, we get a unique solution: the Galileon
Lagrangian

L =
d+1∑
n=1

dnϕLder
n−1

Lder
n = εµ1...µd εν1...νd

n∏
i=1

∂µi∂νiϕ

d∏
j=n+1

ηµjνj = −(d − n)! det
{
∂νi∂νjϕ

}
.

It possesses the Galilean shift symmetry

ϕ → ϕ+ a+ bµx
µ

and leads to EoM of second-order in field derivatives.

Galileon itself is a remarkable theory: can be connected with a local
modification of gravity [Nicolis, Rattazzi, Trincherini ’09].
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Surprise: ρ = 2, σ = 3 (enhanced soft limit)

general galileon: three parameters (in 4D)

only two relevant (due to dualities [de Rham, Keltner, Tolley ’14] [KK, Novotny ’14])

let us demand O(p3) behaviour

we have verified: possible up to very high-pt order

suggested a new theory: special galileon [Cheung,KK,Novotny,Trnka

1412.4095]

symmetry explanation: hidden symmetry [K. Hinterbichler and

A. Joyce 1501.07600]

ϕ → ϕ+ sµνx
µxν − 12λ4s

µν∂µϕ∂νϕ

theory appears also in the context of CHY-type formulation
[Cachazo, He, Yuan 1412.3479]
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Summary of Classification of EFTs: “soft-bootstrap”

Non-trivial cases

for: L = ∂mϕn : m < σn ⇔ σ >
(n − 2)ρ+ 2

n

i.e.
ρ σ at least

0 1

1 2

2 2

3 3
non-trivial regime for
ρ ≤ σ

�

⇢

0 1 2 3

1

2

3

0

P(X) DBI

NLSM

Gal
sGal

trivial soft 
behavior

forbidden

4

WZW

[C. Cheung, K. Kampf, J. Novotny, C. H. Shen and J. Trnka ’17]
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Further directions of the soft amplitudology:

vector effective field theories from soft limits [1801.01496]

generalization for Adler zero [1910.04766]

scalar-vector galileon [2104.10693]

graded soft theorems [2107.04587]

higher orders [2109.11574]

NLSM at one-loop [2206.04694]

ongoing collaboration with Ch.Bartsch, J.Novotny, J.Trnka on
NLSM at all-loop order

GB on celestial sphere: [2303.14761]

scalar BCJ bootstrap: [2305.05688]

ongoing collaboration on exploring the KLT double copy properties
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Example of multipower-counting theory
[KK,Novotny,Vasko’21]:

full reconstructibility if: ρmin ≤ σmin ≥ ρmax ≤ σmax

Similarly, for DBI-Galileon: interesting possibility of UV completion

complicated problem:
[Adams,Arkani-Hamed,Dubovsky,Nicolis,Rattazzi’06], [Keltner,Tolley’15],
..., [Buoninfante, Tokuda, Yamaguchi’23]
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NLSM in double-copy studies

[screenshot from: Z.Bern et al. 1909.01358]:
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Higher-orders NLSM

40 years of ChPT: up to NNNLO O(p8)
from the amplitude perspective?
yes!: [Dai, Low, Mehen, Mohapatra ’20], [KK ’21]

#mesons #terms

p2 4 1

p4 4 2

p6 4 2
6 5

p8 4 3
6 22
8 17
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Higher-orders NLSM: scalar BCJ bootstrap

[Brown,KK,Oktem,Paranjape, Trnka ’23]

BCJ
n−1∑
i=2

(s12+. . .+s1i )An(2, . . ., i , 1, i+1, . . ., n) = 0 ,

We focused on the statement [Gonzalez, Penco, Trodden’19]:

BCJ ⇒ Adler.

For recent studies of the KLT bootstrap see also [Chi, Elvang, Herderschee,

Jones, Paranjape ’21], [Chen, Elvang, Herderschee ’23]
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Higher-orders NLSM: scalar BCJ bootstrap

[Brown,kk,Oktem,Paranjape, Trnka ’23]

4pt
O(p#) 2 4 6 8 10 12 14 16 18

Soft amplitudes 1 2 2 3 3 4 4 5 5

BCJ amplitudes 1 0 1 1 1 1 2 1 2
not the final answer!

/ 0 / 1 / 1

analysis of 6pt (up to O(p18) and 8pt (up to O(p10)): many
surprised relations among coefficients of different orders, e.g.

α(10) ∼
(
α(6)

)2
what are “BCJ Lagrangians”?

NLSM
Z-theory [Broedel, Schlotterer, Stieberger ’13], [Carrasco, Mafra,
Schlotterer’16]
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Summary

short overview of ten years of the soft bootstrap

NLSM represents a role model

same methods for other theories (DBI, Galileon)

new theory discovered: special Galileon

many avenues, e.g.: multi powercounting, double-copy studies,
higher-orders

new surprising connections of NLSM with the ⟨ϕ3⟩ theory up to all
orders (!) [Arkani-Hamed et al, in preparation]

thank you!
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