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1. Quasinormal modes: Introduction.

Figure: An example of the time-domain profile for the ` = 2 axial gravitational perturbations
of the Schwarzschild black hole.

(I) - initial outbursts;
(II) - quasinormal ringing;
(III) - power-law tails.
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2. Perturbations, wave equations, boundary conditions.

1 Test fields:
1 general covariant equation for a given test field in curved spacetime;
2 separation of variables, leading to a wave-like equation

2 Gravitational field:
1 The perturbed metric has the form

gµν = gµν0 + δgµν , (1)

where gµν0, is the background (unperturbed) metric; δgµν is perturbation;
2 linearization of the dynamical equations for the gravitational and matter fields

leading, after separation of variables to wave-like equation for a gauge-invariant
combination from δgµν .

In the majority of cases, one can reduce perturbation equations to the wave-like form:

d2Ψ

dx2 = U(x , ω)Ψ, (2)

where in the simplest (but popular) case U(x , ω) = V (x)− ω2, V (x) is the effective
potential, x is the tortoise coordinate, ω = Re(ω) + iIm(ω), Im(ω) ∼ damping rate.
The boundary conditions:

1 x → −∞ =>
a purely ingoing wave at the event horizon,

2 x → +∞ =>
a purely outgoing wave at infinity.
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3. One-slide-review of SOME methods for calculating QNMs.

1 Frobenius method. = Leaver method = Continued fraction method. It uses the
expansion of the solution for the wave function into the Frobenius series. Based
on the convergent procedure and allows precise calculation of QNMs. Requires
analysis of singular points of differential equations and an initial guess for the
value of the frequency. [First: E. Leaver, Proc.Roy.Soc.Lond.A 402 (1985)
285-298]

2 Integration in time-domain. Construction of the time-domain profile at a fixed
spacial coordinate like on the fig. 1 above. Include contributions of all overtones
at a given `. Extraction of frequencies from the profile is possible for a few lowest
modes by the Prony method. It allows one to detect the onset of instability.
[First: C. Gundlach, R. H. Price, J. Pullin, Phys.Rev.D 49 (1994) 883-889]

3 WKB method is a semi-analytic method, which allows one to obtain
automatically QNM with sufficiently high accuracy for a broad range of black
hole configurations. It has a publicly shared code in [R. K, A. Zhidenko, and A.
F. Zinhailo, Class. Quant. Grav., 36:155002, 2019] and a number of limitations.
[First: B. Schutz, C. Will, Astrophys. J. Lett. 291 (1985) L33-L36]

4 Bernstein spectral method. The wave function is represented as a sum over the
Bernstein polynomials. The method is automatically applied to various
spacetimes and has a publicly shared code in [R. A. K., A. Zhidenko, Phys.Rev.D
107 (2023) 4, 044009]. Efficient for finding several lowest modes and detecting
instability. [First: S. Fortuna and I. Vega, [arXiv:2003.06232 [gr-qc]]]
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4. WKB method: a bit of chronology.

1 The first WKB order. B. Mashhoon, in 3rd Marcel Grossmann Meeting, p. 598,
1982; B. Schutz, C. Will, Astrophys. J. Lett., 291:L33–L36, 1985.

2 The 3d-order of WKB formula S. Iyer and C. Will Phys. Rev. D, 35:3621, 1987.
3 The 6th-order of WKB formula R. K., Phys. Rev. D, 68:024018, 2003.
4 13th order and Padé approximants J. Matyjasek and M. Opala, Phys. Rev. D,

96:024011, 2017.

Figure: The three regions separated by the two turning points.

(I, III) - WKB series;
(II) - Taylor series.
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4. WKB method.

The result of the matching of the WKB and Taylor series is the general form:

ω2 = V0 + A2(K2) + A4(K2) + A6(K2) + . . . (3)

−iK
√
−2V2(ω)

(
1 + A3(K2) + A5(K2) + A7(K2) . . .

)
,

where Ak(K2) is the correction of order k to the eikonal formula, V2 is the second
derivative of the effective potential in its maximum relatively the tortoise coordinate.
It can be found for each order separately. For the first order we have
A2 = A3 = A4 = ... = 0 and:

ω2 = V0 − iK
√
−2V2, (4)

For boundary condition of quasinormal problem:

K =

{
+n + 1

2 , ωRe > 0;

−n − 1
2 , ωRe < 0;

(5)

n = 0, 1, 2, 3 . . . .

The WKB formula is exact in the eikonal limit `→∞ and usually provides very good
accuracy for `� n.
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4. WKB method: Restrictions.

The WKB formula impose strict limits on the range of its applicability. In particular,
the WKB formula cannot be applied when studying:

1 Superradiance. Owing to extracting rotational energy from a black hole, the
incident wave can be reflected with larger amplitude than it had in the beginning.
It also takes place for a charged scalar field in the non-rotating electrically
charged black-hole background.

2 Stability. Unstable modes ωIm > 0 correspond to the bound states, and the
analytic continuation in this case should be done in a different way.

3 Infinitely long-lived modes, called quasiresonances.. For large values of the field
mass, the effective potential does not have a local maximum, so that the WKB
expansion cannot be performed.

4 Higher overtones of the quasinormal spectrum. Usually the WKB accuracy is
reasonable for ` > n and marginal already for ` = n, ` is a multipole number.

5 Asymptotically nonconstant potential (for example, for black holes with the
anti-de Sitter asymptotic).
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5. WKB with Padé approximants.

To improve accuracy one can consider an extension of the WKB-method by using the
Padé approximants (Matyjasek and M. Opala, 2017):

Pñ+m̃(ε) = Pk(ε) = V0 + A2(K2)ε2 + A4(K2)ε4 + A6(K2)ε6 + . . .

− iK
√
−2V2

(
ε+ A3(K2)ε3 + A5(K2)ε5 . . .

)
, (6)

where k is the polynomial order coincides with the WKB order. Formal parameter ε is
introduced in order to track WKB orders. With Padé approximants polynomial
Pñ+m̃(ε) is a rational function:

Pñ/m̃(ε) =
Q0 + Q1ε+ . . .+ Qñε

ñ

R0 + R1ε+ . . .+ Rm̃εm̃
, (7)

The coefficients Q0,Q1, . . . ,Qñ and R0,R1, . . . ,Rm̃ can be obtained in the same way
as A2,A3, . . . ,Ak by matching the expansion of the solution near the potential peak
through the turning points. For first Padé approximation we have,

ω2 = P0/1(1) =
V 2

0
V0 + iK

√
−2V2

. (8)

Usually, when ñ ≈ m̃, the approximation is much better comparing to the usual WKB
formula without Padé approximants.
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6. Examples: QNMs.

methodorder ωk ErrorRe ErrorIm
` = 0, n = 0: ω = 0.220910− 0.209791i

WKB1 0.189785− 0.098239i 14.090% 53.173%
WKB3 0.209294− 0.230394i 5.258% 9.821%
WKB6 0.220934− 0.201633i 0.011% 3.889%
WKB7 0.225845− 0.207002i 2.234% 1.329%
WKB9 0.256553− 0.228135i 16.135% 8.744%
Pad1 0.299357− 0.154959i 35.511% 26.137%
Pad3 0.221995− 0.200495i 0.491% 4.431%
Pad6 0.222620− 0.209111i 0.774% 0.324%
Pad7 0.223831− 0.208727i 1.322% 0.507%
Pad9 0.220627− 0.209924i 0.128% 0.0634%

Table: Quasinormal modes of a massless scalar field for ` = 0 calculated with the WKB
formula and Padé approximation of different orders: The error ERe/Im =

∣∣∣ωk−ω
ω

∣∣∣× 100%.
The frequencies are given in units rh = 1 and for conversion into kHz one should multiply by
π(5142Hz) · (M⊙/M). For example, a black hole of mass M = 10 · M⊙ has a frequency of
1.2 kHz and damping time of 0.55 ms.
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6. Examples: QNMs.

methodorder ωk ErrorRe ErrorIm
` = 1, n = 0: ω = 0.585872− 0.195320i

WKB1 0.655100− 0.184647i 11.8163% 5.4642%
WKB3 0.582228− 0.196003i 0.6220% 0.3497%
WKB6 0.585819− 0.195523i 0.0090% 0.1039%
WKB7 0.585746− 0.195305i 0.0215% 0.0077%
WKB9 0.585867− 0.195284i 0.0009% 0.0271%
Pad1 0.658868− 0.192512i 12.459% 1.4374%
Pad3 0.585345− 0.194519i 0.0899% 0.4101%
Pad6 0.585864− 0.195320i 0.0014% 0.0002%
Pad7 0.585867− 0.195321i 0.0008% 0.0004%
Pad9 0.585868− 0.195316i 0.0007% 0.0022%

Table: Quasinormal modes of the massless scalar field for D = 4, ` = 1 calculated with the
WKB formula and Padé approximation of different orders: The error
ERe/Im =

∣∣∣ωk−ω
ω

∣∣∣× 100%.
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6. Scattering problem.

The intensity of Hawking radiation is always partially suppressed by the effective
potential surrounding the black holes, because the part of the total flow of particles
emitted by the black hole is reflected back to the event horizon. In order to estimate
the number of particles reflected by the effective potential we need first to find the
gray-body factors, that is, to solve the classical scattering problem. Wave equation:

d2Ψ

dx2 = (V (x)− ω2)Ψ, (9)

with boundary conditions

Ψ = e−iωx + Re iωx , x → +∞,
Ψ = Te−iωx , x → −∞, (10)

where R and T are the reflection and transmission coefficients. In particular, when
the effective potential is real, K is a purely imaginary constant related with the
reflection and transmission coefficients in the following way,

|R|2 =
1

1 + e−2πiK , 0 < |R|2 < 1. (11)

|T |2 =
1

1 + e2πiK = 1− |R|2. (12)
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6. Scattering problem.

Energy emission rate for Hawking radiation has the form:

dE
dt

=
∑
`

N` |Al |2
ω

exp (ω/TH)± 1
dω
2π
, (13)

were Al are the grey-body factors, and Nl are the multiplicities, which only depend
on the space-time dimension and l ,

TH =
1
4π

√
−

g ′tt
g ′rr

∣∣∣∣
r=r+

is the Hawking temperature for spherically symmetric black hole.
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6. Scattering problem.

Figure: Transmission coefficients for ` = 1 (black), eikonal approximation (blue), second-order
WKB formula (red).
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6. Scattering problem.

`/k dE/dt by Page dE/dt by WKB Error
Neutrinos

k = 1 0.000630 0.000639 1.42857%
k = 2 0.000024 0.000024 0%
k = 3 4× 10−7 4.7× 10−7 17.5%

The sum 0.00065 0.00066 1.53846%

Photons
` = 1 1.32 · 10−4 1.34 · 10−4 1.51515%
` = 2 2.80 · 10−6 2.67 · 10−6 4.64286%
` = 3 4 · 10−8 4.03 · 10−8 1.75%

The sum 1.35 · 10−4 1.37 · 10−4 1.45985%

Gravitons
` = 2 0.152 · 10−4 0.152 · 10−4 0%
` = 3 1.6 · 10−7 1.43 · 10−7 10.625%

The sum 0.154 · 10−4 0.154 · 10−4 0.110677%

Table: Energy emission for the Schwarzschild background (M = 1/2) after integrating over all
the quantum numbers and ω in Page’s work versus that obtained here with the help of the 6th
order WKB formula.
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7. Bernstein polynomial spectral method.

For asymptotically flat black holes we introduce the compact coordinate u,

u ≡
1
r
,

and represent y(u) as a sum,

y(u) =
N∑

k=0

CkBN
k (u), (14)

where
BN

k (u) ≡
N!

k!(N − k)!
uk(1− u)N−k

are the Bernstein polynomials. Substituting the wave function into the master wave
eqution and using a Chebyschev collocation grid of N + 1 points, we obtain a set of
linear equations with respect to Ck , which has nontrivial solutions iff the corresponding
coefficient matrix is singular. The problem is reduced to the eigenvalue problem of a
matrix pencil with respect to ω, which can be solved numerically. Once the eigenvalue
problem is solved, one can calculate the corresponding coefficients Ck and explicitly
determine the polynomial (14), which approximates the solution to the wave equation.
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8. Conclusions.

We have considered two automatic methods for which codes are publicly shared, the
WKB method with Pade approximants and the Bernstein polynomial method.

1 If the effective potential has single maximum and monotonically decay at the
boundaries, usually you can find modes ` ≥ n with sufficient accuracy by the 6th
or 7th order WKB method with Pade approximants m̃ ≈ ñ.
To download the code: https://docs.google.com/document/d/1Qot9n954AhM-
euRy1cBgPx77devbVjoAiyLwLUqHVmA/preview

2 The grey-body factors can be found sufficiently accurately by the usual 6th WKB
order formula.

3 The first several quasinormal modes with whatever relation between n and ` can
be found by the Bernstein polynomial method. It is especially effective for
detecting purely imaginary modes, such as algebraically special mode, or modes
driving the instability.
To download the code: https://arxiv.org/src/2211.02997/anc
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Thank you for your attention!
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