Gravitationally induced gamma ray background

Georg Trenkler CEICO - Czech Academy of Sciences - Prague

based on:

Sabir Ramazanov, Rome Samanta, G.T., Federico Urban JCAP 06 (2023) 019 - arXiv: 2304.11222

ROPEAN UNION ropean Structural and Investment Funds erational Programme Research, velocment and Eclucation

Prague, 10 October 2023

Gravitational Wave Detectors and Sources

By Christopher Moore, Robert Cole and Christopher Berry, formerly of the Gravitational Wave Group at the Institute of Astronomy, University of Cambridge

gwplotter.com

Moore, Cole, and Berry

G. Trenkler (CEICO)

CEICO

What about frequencies $f \gg 10 \text{ kHz}$?!

Already many efforts in this direction: Aggarwal et al'2020 "Challenges and Opportunities of Gravitational Wave Searches at MHz to GHz Frequencies"

Extension to 10¹⁸ Hz Dolgov&Ejlli'13 and even to 10²⁷ Hz Ito, Kohri, and Nakayama'23 Already many efforts in this direction: Aggarwal et al'2020 "Challenges and Opportunities of Gravitational Wave Searches at MHz to GHz Frequencies"

Extension to 10¹⁸ Hz Dolgov&Ejlli'13 and even to 10²⁷ Hz Ito, Kohri, and Nakayama'23

2 questions to be addressed in this talk

- What are the largest energies of gravitons to be observed?
- Are there physical mechanisms capable of producing such high energy gravitons?

G. Trenkler (CEICO)

How to measure extremely high frequency GWs? Gertsenshtein effect

$$\mathcal{L}_{em} = -\frac{1}{4} g^{\mu\lambda} g^{\nu\rho} F_{\mu\nu} F_{\lambda\rho} \qquad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}$$

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$

Consider $F_{\mu\nu}$ as a superposition of an external static (electro)magnetic field and a photon field: \implies oscillations $h \leftrightarrow \gamma$ in the presence of A^{ext} $\propto \frac{1}{M_{Pl}}$

- Gertsenshtein effect: $\gamma \rightarrow h$
- Inverse Gertsenshtein effect: $h \rightarrow \gamma$

Close relative of axion-to-photon conversion: $\frac{a}{f}F_{\mu\nu}\tilde{F}^{\mu\nu}$

Ignore photon interactions.

Conversion probability:

$$P_{h\to\gamma}(L)=\frac{\mathbf{B}^2L^2}{2M_{Pl}^2}$$

• Good: magnetic fields are present everywhere, — galaxies, planets, stars etc.

$$\begin{split} & B(\text{Milky Way}) \sim 10^{-6} \text{ Gauss} \sim 10^{-26} \text{ GeV}^2 \\ & B(\text{Earth}) \sim 1 \text{ Gauss} \sim 10^{-20} \text{ GeV}^2 \\ & B(\text{neutron star}) \sim 10^8 \text{ Gauss} \sim 10^{-12} \text{ GeV}^2 \end{split}$$

- Bad: magnetic fields are very weak, while the effect is Planck suppressed!
- Good: magnetic fields are spread over large scales, e.g.,

$$L({
m Milky Way}) \sim 10 \; {
m kpc} \Longrightarrow P_{h
ightarrow \gamma} \sim 10^{-15}$$

$$A_i(ec{x},t) = \sum_{\lambda = \parallel,\perp} A_\lambda(ec{x}) \epsilon_i^\lambda e^{-i\omega t}$$

$$h_{ij}(ec{x},t) = \sum_{\lambda= imes,+} h_\lambda(ec{x}) e^\lambda_{ij} e^{-i\omega t} \; ,$$

$$A_i(\vec{x},t) = \sum_{\lambda = \parallel,\perp} A_\lambda(\vec{x}) \epsilon_i^\lambda e^{-i\omega t} \qquad h_{ij}(\vec{x},t) = \sum_{\lambda = \times,+} h_\lambda(\vec{x}) e_{ij}^\lambda e^{-i\omega t} ,$$

$$\left(i\frac{d}{dz}+\omega\right)\begin{pmatrix}h_{+}\\h_{\times}\\A_{\parallel}\\A_{\perp}\end{pmatrix}=\left(\begin{matrix}0&C_{h\gamma}\\C_{h\gamma}^{\dagger}&0\end{matrix}\right)\begin{pmatrix}h_{+}\\h_{\times}\\A_{\parallel}\\A_{\perp}\end{pmatrix}$$

$$A_i(\vec{x},t) = \sum_{\lambda = \parallel,\perp} A_\lambda(\vec{x}) \epsilon_i^\lambda e^{-i\omega t} \qquad h_{ij}(\vec{x},t) = \sum_{\lambda = \times,+} h_\lambda(\vec{x}) e_{ij}^\lambda e^{-i\omega t} ,$$

$$\left(i\frac{d}{dz} + \omega\right) \begin{pmatrix} h_+ \\ h_{\times} \\ A_{\parallel} \\ A_{\perp} \end{pmatrix} = \begin{pmatrix} 0 & C_{h\gamma} \\ C_{h\gamma}^{\dagger} & 0 \end{pmatrix} \begin{pmatrix} h_+ \\ h_{\times} \\ A_{\parallel} \\ A_{\perp} \end{pmatrix}$$

$$C_{\mathrm{h}\gamma} = \frac{i}{\sqrt{2}M_{\mathrm{PI}}} \begin{pmatrix} \vec{B} \cdot \vec{\epsilon}_{\perp} & \vec{B} \cdot \vec{\epsilon}_{\parallel} \\ -\vec{B} \cdot \vec{\epsilon}_{\parallel} & \vec{B} \cdot \vec{\epsilon}_{\perp} \end{pmatrix}$$

$$A_i(\vec{x},t) = \sum_{\lambda = \parallel,\perp} A_\lambda(\vec{x}) \epsilon_i^\lambda e^{-i\omega t} \qquad h_{ij}(\vec{x},t) = \sum_{\lambda = \times,+} h_\lambda(\vec{x}) e_{ij}^\lambda e^{-i\omega t} ,$$

$$\begin{pmatrix} i\frac{d}{dz} + \omega \end{pmatrix} \begin{pmatrix} h_+ \\ h_{\times} \\ A_{\parallel} \\ A_{\perp} \end{pmatrix} = \begin{pmatrix} 0 & C_{h\gamma} \\ C_{h\gamma}^{\dagger} & 0 \end{pmatrix} \begin{pmatrix} h_+ \\ h_{\times} \\ A_{\parallel} \\ A_{\perp} \end{pmatrix}$$

$$C_{\mathrm{h}\gamma} = \frac{i}{\sqrt{2}M_{\mathrm{PI}}} \begin{pmatrix} \vec{B} \cdot \vec{\epsilon}_{\perp} & \vec{B} \cdot \vec{\epsilon}_{\parallel} \\ -\vec{B} \cdot \vec{\epsilon}_{\parallel} & \vec{B} \cdot \vec{\epsilon}_{\perp} \end{pmatrix}$$

$$egin{split} P_{h
ightarrow\gamma}(L) &\equiv \sum_{\substack{\lambda = \parallel, \perp \ ec{B}_{ au} \in ec{\epsilon}_{\parallel}}} |\langle A_{\lambda}(L)|h_{ imes, +}(0)
angle|^2 &= rac{1}{2M_{Pl}^2} \cdot \left|\int_0^L ec{B}_T dz
ight|^2 \ ec{B}_{ au} &\equiv \left(ec{B}\cdotec{\epsilon}_{\parallel}
ight)ec{\epsilon}_{\parallel} + \left(ec{B}\cdotec{\epsilon}_{\perp}
ight)ec{\epsilon}_{\perp} \end{split}$$

0

Include photon interactions with electrons

$${\cal L}_{\it int} = e ar{\Psi} \gamma^\mu \Psi {\cal A}_\mu$$

Or Euler-Heisenberg interaction after integrating out fermions:

$$\mathcal{L}_{EH} = \frac{\alpha^2}{90m_e^4} \cdot \left[(F_{\mu\nu}F^{\mu\nu})^2 + \frac{7}{4} \cdot \left(F_{\mu\nu}\tilde{F}^{\mu\nu} \right)^2 \right]$$

$$\begin{pmatrix} i\frac{d}{dz} + \omega \end{pmatrix} \begin{pmatrix} h_+\\h_\times\\A_\parallel\\A_\perp \end{pmatrix} = \begin{pmatrix} 0 & C_{h\gamma}\\C_{h\gamma}^{\dagger} & \omega(n-1) \end{pmatrix} \begin{pmatrix} h_+\\h_\times\\A_\parallel\\A_\perp \end{pmatrix}$$

$$C_{h\gamma} = \frac{i}{\sqrt{2}M_{\text{Pl}}} \begin{pmatrix} \vec{B} \cdot \vec{\epsilon}_\perp & \vec{B} \cdot \vec{\epsilon}_\parallel\\-\vec{B} \cdot \vec{\epsilon}_\parallel & \vec{B} \cdot \vec{\epsilon}_\perp \end{pmatrix}$$

n is a refraction index

No photon interactions $\implies n = 1 \implies P_{h \rightarrow \gamma}(L) = \frac{B^2 L^2}{2M_{Pl}^2}$

Photon interactions $\implies n \neq 1$

G. Trenkler (CEICO)

٠

$$n-1 = (n-1)_{
hol} + rac{11}{4}(n-1)_{
m QED} + (n-1)_{
m CMB}$$

2

•
$$(n-1)_{pl} = -\frac{\omega_{pl}^2}{2\omega^2}$$
 negligible in our case $\omega \gg \omega_{pl}$
• $(n-1)_{CMB} = \frac{44\pi^2\alpha^2}{2025} \frac{T_{CMB}^4}{m_e^4} \iff \text{Euler-Heisenberg}$
• $(n-1)_{QED} = \frac{4\alpha^2}{45} \frac{B_T^2}{m_e^4} \iff \text{Euler-Heisenberg}$

Refraction index is a purely quantum phenomenon in our case!

Graviton-to-photon conversion probability is changing in the presence of non-trivial refraction index $n \neq 1$

$$P_{\mathrm{h}
ightarrow\gamma}(L) pprox rac{\left|\int_{0}^{L} dz' \ e^{i\omega(n-1)z'} \vec{B}_{\mathrm{T}}
ight|^{2}}{2M_{\mathrm{P}}^{2}}$$

Oscillations due to $n \neq 1$ may suppress conversion

$$\omega(n-1)L_{\mathsf{corr}} \simeq \pi \Longrightarrow \left[\omega_{\mathit{max}} \lesssim 1 \ \mathsf{PeV} \ \left(rac{10 \ \mathsf{kpc}}{L_{\mathsf{corr}}}
ight) \cdot \left(rac{6 \ \mu\mathsf{G}}{B_{\mathsf{T}}}
ight)^2
ight]$$

For $\omega \ll \omega_{max} \Longrightarrow P_{h \to \gamma}(L) = \text{const}$ For $\omega \gg \omega_{max} \Longrightarrow P_{h \to \gamma}(L) \propto \frac{1}{\omega^2}$

$$1 \text{ PeV} = 1000 \text{ TeV}$$

Gravitationally induced gamma ray background

Assume non-zero cosmological energy density of gravitons with $\rho_{\rm gw} \Longrightarrow$ the flux of gravitons

$$\Phi_{\rm gw}(\omega) = \frac{1}{4\pi} \cdot \frac{d\rho_{\rm gw}}{d\ln\omega} = \frac{\Omega_{gw}\rho_{tot}}{4\pi}$$

On the way to Earth, a small fraction of gravitons is converted into photons in the Milky Way magnetic field through the inverse Gertsenshtein effect:

$$\Phi_{\gamma}(\omega, \vec{n}) = \Phi_{\mathsf{gw}}(\omega) \cdot P_{\mathsf{h} \to \gamma}(\omega, \vec{n})$$

Photon flux [10^(-11) GeV/(cm2 s sr)]

$\Omega_{gw} h_0^2 = 1$ Magnetic field model by Jansson&Farrar'12

G. Trenkler (CEICO)

CEICO

Photon flux [10^(-11) GeV/(cm2 s sr)]

Magnetic field model by Pshirkov, Tinyakov, Kronberg, Newton-McGee'11

1.6

0.8

2.4

3.2

G. Trenkler (CEICO)

0.0

Some gamma-ray observatories and their sensitivities

What to compare the gravitationally induced flux $\Phi_{\gamma} = (a \text{ few}) \times 10^{-11} \text{ GeV}/(\text{cm}^2 \cdot \text{sec} \cdot \text{sr}) \cdot \Omega_{gw} h_0^2$ with?

Sensitivity of LHAASO observatory after 1-year towards diffuse gamma-ray background has been estimated in Neronov&Semikoz'20:

 $\Phi_\gamma \sim 10^{-10}~~{
m GeV}/({
m cm}^2 \cdot {
m sec} \cdot {
m sr})$

One can probably test $\Omega_{gw} h_0^2 \sim 1$, but this is too much! We failed, but not miserably! In the future, one can probably test $\Omega_{gw} h_0^2 \sim 0.1, \ 0.01, ...$ Production of very high energy gravitons

How to produce gravitons with sub-PeV energies?

How to produce gravitons with a significant cosmological abundance?

• Pre-recombination production of gravitons:

 $\Omega_{gw} h_0^2 \lesssim 10^{-6}$ from Planck+BAO'18

- \implies no observable signatures
- Post-recombination production of gravitons: $\Omega_{gw}h_0^2\ll 1$ but can be $\Omega_{gw}h_0^2\gg 10^{-6}$

Superheavy dark matter decay

Assume superheavy field S with the mass $M_S \gtrsim 100$ TeV with the only decay channel into a couple of gravitons:

 $S \rightarrow h + h$

 The field S completely decays by present (but after recombination), in which case it can constitute only a small fraction f of dark matter =>

$$\Omega_{
m gw} h_0^2 \simeq rac{f \Omega_{
m dm} h_0^2}{1+z_{
m dec}} \lesssim rac{0.01}{1+z_{
m dec}}$$

• The field S decays has a life expectancy exceeding the age of the Universe $\tau_S \gtrsim 10\tau_U$, in which case it can play the role of dark matter

$$\Omega_{
m gw} h_0^2 \lesssim 0.01$$

Audren et al'14, Chudaykin et al'17, Bucko et al'22

The two-body decay into gravitons can be triggered by the following effective interactions:

$$S \cdot \frac{R^2}{\Lambda} \qquad S \cdot \frac{R_{\mu\nu}R^{\mu\nu}}{\Lambda} \qquad S \cdot \frac{R_{\mu\nu\lambda\rho}R^{\mu\nu\lambda\rho}}{\Lambda}$$

Ema, Mukaida, and Nakayama'21

$$\Gamma\left(S
ightarrow h+h
ight)\simeqrac{M_{S}^{7}}{4\pi\Lambda^{2}M_{Pl}^{4}}$$

 $\Lambda \sim M_S$, $\tau_S \gtrsim 10 \tau_U \Longrightarrow M_S \sim 1 \text{ PeV} \Longrightarrow$ sub-PeV gravitons

- Sub-PeV gravitons with $\Omega_{gw} h_0^2 \sim 1$ are accessible with LHAASO.
- Probing $\Omega_{gw} h_0^2 \sim 0.01$ may be possible with future improvements of Cherenkov arrays.
- It is possible to generate $\Omega_{gw}h_0^2 \sim 0.01$ through 2-graviton decays of superheavy dark matter.
- Above ~ 1 PeV, the graviton-to-photon conversion becomes suppressed with the graviton energy $P \sim 1/\omega^2$ because of the QED birefringence effect.

Thank you!