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Outline

Motivations

Introduction
® Theories with the Gauss-Bonnet invariant

® Teleparallel gravity

Gauss-Bonnet invariant in General Teleparallel formulation

® Bulk and boundary splits

® Flat FLRW

Example: scalar-Symmetric-Teleparallel-Gauss-Bonnet theory



Why modified gravity?

® Account for the “invisible” ingredients: Dark Energy, Dark Matter
® Hy and og tensions

® Singularities

® Quantum gravity

® Strong gravity regime needs to be tested

® A good way to understand GR is to modify it



General Relativity - Assumptions

General Relativity is based upon different assumptions that can be understood as the
fulfilling of the Lovelock’'s theorem. Some assumptions are:

® Equivalence principle

® General covariance: Invariant under diffeomorphisms and Local Lorentz
transformations.

® Riemannian geometry: The connection is the Levi-Civita one.
® 4-dimensions
® 2nd order derivatives: gravitational action contains only second derivatives.

® Locality



How to modify it?

Non-Riemannian geometry Higher-order theories

Einstein-Cartan
Poincaré gauge gravity
Teleparallel theories

<

Quantum gravity theories

Hotava-Lifschitz String theory

Other approaches

12 h:
a?:; ?;ilt)i a Holography , Other approaches

Analogue
gravity

(Supergravity] [Rainbow gravity]

D-dimensional theories Tensor-vector-scalar theories

Kaluza-Klein

DGP [Einstein—jEther] [Proca theories]

Beyond Horndeski

Figure: Classification of theories of gravity. (S. Bahamonde et.al., [arXiv:2106.13793 [gr-qc]].)



Gauss-Bonnet invariant

G = Ruvpo R*P° — 4R, R* + R2,

® Quadratic in the curvature
°* D>4:

S:/de\/—gG

Leads to second-order field equations

® D = 4: Topological invariant = Pure boundary term = No change in the
dynamics

G=Vyu [FS}M

Divergence of a non-diff-invariant vector



Theories with Gauss-Bonnet in D =4

How to make the Gauss-Bonnet invariant nontrivial in D = 4:

® f(G) theories

s= [ dsy=anc)

No longer second order
® scalar-Gauss-Bonnet
s= [ dey=on0)G

belongs to Horndeski (Kobayashi, Yamaguchi, Yokoyama (2011))
= Second-order field equations



Scalar-Gauss-Bonnet: linear coupling Sotiriou and Zhou (2014)
L 2 1 2 o
=MPR—5(8¢) + Mpa¢pG
® Shift-symmetric
® Horndeski (G5 ~ log X)

® Evades no-hair theorems by Hui & Nicolis (2012)

Scalar EOM around Schwarzschild

06 = Mpa G = 12MPars
5
Black holes Other sources
Mpar?
¢~ @ (long-range) ¢~ P: 2 (short-range)
T

with
_ Mpa

Ts

Qs




Bounds

Observational constraint: Inspiral

Dephasing due to scalar wave emission:

a < (1.2km)2
Lyu, Jiang, Yagi (2022)

Deviations from GR < 1% for black holes of 10M¢

Causality constraint:
Absence of superluminal propagation:

1
Apy < — ~1km™?!
uv \/a

Serra, Serra, Trincherini, LGT (2022)



Changing geometry

Teleparallel gravity



Geometric notions
Curvature tensor g,

Rotation experienced by a vector when it is parallel transported along a closed curve

3

Torsion tensor 7%, Non-metricity tensor ().,

non-closure of the parallelogram formed when measures how much the length and angle of

two infinitesimal vectors are parallel transported vectors change as we parallel transport them, so

along each other. in metric spaces the length of vectors is
conserved




Fundamental variables and characteristic tensors

® In the most general metric-affine setting, the fundamental variables are a metric g,
(10 comp.) as well as the coefficients I'”,,, (64 comp.) of an affine connection.

® The most general connection can be written as

Connection decomposition

i . A
Levi-Civita Torsion part: K™,

o

1 1 o
F/\,u,l/: F)\,u,u +§T‘)\}LV_T(”,)\V>+§Q>\HV_Q(#)\U):F>\MV+N>\MV
where we have defined the following geometrical tensors use

Curvature RFupe = 0plHug — OcTHyp + TH I T o —TH 6170

Torsion THyp =THp —TH,,

Nonmetricity|Quvp = Vugup = 0ugvp —I'vpu9op — T ppgvo




Curvature tensor decomposition

® The curvature becomes

o o o
Ryupa = Ruupo- + vaHua - VUN”Vp + NHTp]Wl/O' - Nurajwup-

® Contracting the curvature tensor to obtain the Ricci scalar R = g*¥ RP 5, we find

Ricci scalar decomposition
R= R+ (T+29V,(v=97"") + (Q+ Vi@, =V, Q") + C
with
T:= TP Toxe + 2Tp>‘NT,€p>\ — 4T,,NKT’J>‘>\ ,  Torsion scalar,
1 By 1 Bay 1 o 1 o< ici
Q::—ZQaﬁwQ +5QaBWQ +ZQQQ —EQQQ , Nonmetricity scalar,

Ci=2(Quaa TN + Qo7 T s — Q7 0p 7" ) .



Teleparallel geometries

® General Teleparallel geometry (R, 3 = 0): In the case of vanishing curvature,
the connection is flat.

® Torsional Teleparallel geometry (Rq .3 = 0, Qaur = 0): The metric satisfies
the metric-compatibility condition but torsion is non-zero.

® Symmetric Teleparallel geometry (R, 3 = 0, 7%, = 0): Both torsion tensor
and curvature are zero and the gravitational interactions are only mediated
through non-metricity.



Trinity of gravity

TEGR in flat spacetime

T+2V,T" = Q+V,u(Q" - Q")

Figure: Geometrical trinity of gravity (S. Bahamonde et.al., [arXiv:2106.13793 [gr-qc]].)



Extending GR

® Modifications of GR differ depending of the geometrical formulation.
R=T+Br=Q+ Bg

And then:

AR) # [(T) # Q)

We can no longer drop the total derivative terms B7 or Bg.

® What about Gauss-Bonnet?

In the case of Torsional Teleparallel geometry it has been shown:
Kofinas, Saridakis (2014)

~_ AT) (T)
a=T17 + B,

Then we can construct theories like:
S = /d4a:\/—gf(T,BT, ", BD)

or by coupling TKGT) and B(GT) with a scalar independently.



General teleparallel Gauss-Bonnet invariant

Riemannian Gauss-Bonnet invariant:

o o o o o o
G = Ryuvpo R*YP° — 4R, R" + R®
In differential form language (in D dimensions):

o 1 o o
x1 = e 4)|ea1mea1“2 AR™BM NS AN Ne"D
Under the teleparallel condition R* = 0

Reiee = B e e

o 1

] a Oaa as a
me,,l...m,j[—d(Nl2/\1~234LAe A~~/\eD)

“NL A N2 A RSN A A e“”}

o
We now replace R*3% once more time in the second term,

1
G w1l = Wealmw [7d (N“l“z ARWBI N AL A eap)

+(N“1_,-/\ N2 ADN™% 4 N A N2 A N°3 ), A 1\1”‘“4) Ae™ A A e“D}



Gauss-Bonnet invariant - tensorial form

=2 T(GT,Q) + 2B(GT,Q)

T, o
2 T(G Q  _ suvpo [Nm ap NP2, NHS 5 NBHa N1 aMNa“2uVUN“3”4p]
2n(T,Q)  _ 11 o
Be™™ = 5= [V =00t e N2 Bt |
where
1

nvpo _

HVPOps...[iD
= €pq... €
H1p2 3 4 (D—4)! K1---KD



Gauss-Bonnet invariant - alternative split

o 1 ATQ) |, 1(TQ)
a=179 118U

T,
1 T(G Q) 5511/#/;23#4 [N“l a#N&NQVNuaﬁpNﬁuzxg — 2NH1K2  NH3 auNaﬁpN[’B‘u“]o

+29a5NM1H2HN[Msa]VNBm;,YN“/pG 4 QgQBNM1M2uMM3a]VVUNﬁM4P
+49a69w6NMH2uN[HSQ]uNMl’YpN(aB)a]

15 _ 1 A Lo
By - \/7—78“ V=90 s iy g N2 (Nus)‘PN Mo — 5RN3“4PU):|



Properties

® Known Torsional teleparallel expression is recovered for N)‘m, — K)‘W
(Q)‘;w — 0) in the first set

®InD=4:

iT(GT’ D = OG — iB(GT’ A _ boundary term

® All pieces iT(GT’Q) and iB(GT’Q) contain up to second order derivatives of g, and
|



Symmetric teleparallel conditions
Adak et al. (2006), Beltran Jiménez et al. (2017)
® No torsion:
T =T — T =0 — Tr = (A"H2,0,A%,
® No curvature:

Az
R ypo = 8pT"yg—05 Wyt DH ) TT g =T, TT,, =0 —> TN, = 657%3:16*

® Maximum # of d.o.f. associated to the sym. teleparallel connection = 4

® Coincident gauge:
=gt — T, =0 = V,=9,

Einstein-Hilbert action becomes “Einstein action”; diff-invariance lost

M?
l o o o o
SsTEGRIp—0 = Tp / d*z\/—gg"” (Fafmrﬁua - FaﬁaFBW)



Symmetric TG Gauss-Bonnet scalars in FRLW
® Consider flat FLRW background

® Ensure the scalar, metric and connection respect the same symmetries: Killing
vector fields Z: where ( = {1..m}. Solve

‘C'ZC¢ =0 (‘C'Z( g)l»“’ =0 (‘C'ZCF)A pr = 0
—  ds® = —=N(1)2de® + a(t)2(dr® 4+ r?d9? + 12 sin? 9dp?)

For the connection part, it is convenient to decompose the metric as

Guv = =My + hyw, 1 = (—N,0,0,0)

= Qpuv = 2F1(t) npnuny + 2F2(8) nphuw + 2F3(1) hp(um)

® Impose the teleparallel condition (flat connection) = 3 distinct branches

Branch 1: Fy = K, Fo =—H, F3=0
Branch 2: Fy =2H+ 29K Fy = —H,F3 = K

Branch 3: F1 = —K— + 4 p) = K- H F3=K



Symmetric TG Gauss-Bonnet scalars in FRLW

&= 1T(GQ) n IBE,J,Q) - ZTE;Q) + 2B(G,Q) — 2452 (zgv + H2> .

First set
2 (H 2
2402 ( = + H?) , First branch
N
- .
1,.(Q 6(2H + K)2H  12H(H+ K)K
T(G )= + + 61 (6HK + 41 + 3K°) Second branch
N N
6(K — 2H)2H  12H(K — H)K 5 N 5
+ +6H (—6HK+ 4H? + 3K ) , Third branch
N N
0, First branch
6K(4H + K)HI  12H(H + K)K
1B(Q) — — — ISHQK(2H+ K), Second branch
G = N . N .
6K(4H — K)H  12H(H — K)K 5
+ + 18H?K(2H — K) , Third branch
N N
Second set
2 (H 2
—1282 (= + H?) , First branch
N
2 12H(H+ K)H  6H2K
T(GQ) = - - — 6H3(2H+ 3K), Second branch
N N
12H(K — H)H  6H?K
T T T T L 6HP (3K — 2H) Third branch
N N
o (H 2 .
36H" — + H N First branch
N
. 5
2 12H(3H + K)H  6H%K
B(GQ) = 12H@EH + K1 + —— 1 18H3(2H+ K),  Second branch
N
6H(6H — 2K)H  6H2K
_ 4 18H3(2H7 K) . Third branch
N N




Symmetric TG scalar-Gauss-Bonnet

5= 5o [ dov/a[Q- 50:00"0 + G197 + aaGa(@) B

T 2.2

® Riemannian scalar-Gauss-Bonnet is contained as a special case:

a1G1(¢) = a2Ga(¢)

® Second order field equations in all the fields (¢, g,., ') for both sets

® For the second set only, the theory can be written with up to quadratic
contractions of Q) = It belongs to the Symmetric Teleparallel Horndeski class

Bahamonde, Trenkler, LGT, Yamaguchi (2022)



Summary

Theories including the Gauss-Bonnet invariant have interesting phenomenology
Alternative geometrical formulations of gravity provide new ways to modify GR

We extended the Gauss-Bonnet invariant to General Teleparallel constructions, in
particular the Symmetric Teleparallel case.

We found that the splitting between a bulk and a boundary term is not unique,
and in D = 4 both pieces are boundary terms.

In a flat FLRW background in Symmetric Teleparallel formulation 3 branches of
solutions exist. The corresponding ST-Gauss-Bonnet invariants include the d.o.f.
of the connection K(t) notrivially.

Example theory: Scalar-ST-Gauss-Bonnet theory has second-order field equations.

Future directions include:

® Cosmological evolution

® Scalarized BHs in scalar-ST-Gauss-Bonnet
® Generalization to Metric-Affine Gravity

L]



Thank you for your attention!
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