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Spontaneous scalarization as screening mechanism

* How can a theory introduce corrections in the strong gravity
regime while being in agreement with current observations?

* We can resort to screening mechanisms
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Spontaneous scalarization



Spontaneous scalarization

 Two branches of solutions: GR and scalarized

* Transition between the two when crossing a “threshold”

Compactness Spin

Curvature



Tachyonic instability

Tachyon: wave degree of freedom with imaginary
frequency due to negative mass square

For low k and negative mass
square,
the frequency becomes
imaginary

=) |nstability due to the exponential growth of the field



Suppressing the instability

* Process completed
by considering nonlinearities of
the system

* If they are strong enough,
they can suppress the instability
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Horndeski gravity

Most general action with a scalar field and second order field equations
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The minimal theory
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The scalar field equation:
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Black holes: the setup
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The line element: ds? = —e! (") + e M) 2 + r2d0?

e can be solved algebraically. Two variables: I'and ¢.

Expansion near horizon: dﬁ;h — (a + \/K) /b — A >0

Defines existence region on
(7h, ¢n) space for regular
solution



Black holes: mass and scalar charge

Metric and scalar field at spatial infinity: r

¢
l r

We extract the value of the ADM mass and the scalar charge from:

1
M = — (§T2Al GA)

Tmax



Black holes: properties of the solutions

e Solutions with zero nodes

 Rescaled mass and scalar
charge

N = M/Va
Q=Q/va

a > ()
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Black holes: domain of existence

e Solutions with zero nodes
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Neutron stars: the setup

2
S = 25 d4.CC\/ {R —V qbV”gb (ﬁR — g) §b2 } + SM
Ansatz for the metric: ds? = —el' (") 4 A gr2 1 12402

e can be solved algebraically. Three variables:T',® and €.

Expansion at » — 0 of the form: f(r Z fnr"

== |nitial condition and existence equation for A,



Neutron stars: existence regions

SLy EOS with central energy density s.t. Mgr = 1.12 M
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Neutron stars: existence regions

SLy EOS with central energy density s.t. Mgr = 2.04 M
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Neutron stars: binary pulsars constraints

6lTLMI
090

“Sensitivity” of compact objects: aj = 2

Constraint from binary pulsar, notably PSR J1738+0333 system:
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Neutron stars: properties of the star

Small negative 3 coupling, e.g. 5 = —10
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Neutron stars: properties of the star

Positive 3 coupling, e.g. 3 = 50
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Small positive values of the Ricci scalar coupling

For small positive (3:
* Neutron stars are either not or faintly scalarized

e Black holes scalarize and can introduce new

interesting phenomenology

* Compatibility with attractor mechanism to GR on cosmological scales

(G. Antoniou, L. Bordin and T. Sotiriou, arXiv:2004.14985)



Conclusions

 Study of spontaneous scalarization for Horndeski theory
* |dentification of “minimal theory”
* Analysis of the threshold of spontaneous scalarization

 Study of black holes and neutron stars scalarization and

their prioperties

* First preliminary constraints on coupling constant



Future perspectives

* Further connect results to observations (e.g. post-Newtonian analysis

of inspiral phase of binaries)
 Study of scalarization induced by rotation for our model
e Study of well-posed initial value problem

e Stability analysis



Thank you!
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Spontaneous scalarization for NSs Damour and Esposito-

* First proposed by Damour and Esposito-Farese ‘93
* Linear tachyonic instability around a GR neutron star configuration

STt [ 10 + S (B )

&= do +0¢ ~




Spontaneous scalarization for BHs

e Similar mechanism studied in scalar Gauss-Bonnet gravity

Silva et al. 2018
Doneva et al. 2018
Antoniou et al. 2018

e Spontaneous scalarization for both neutron stars and black holes

S = i fd4x\/jg (R — %VM¢V“¢ + f(¢)§¢) + SM|Guvs Ym]

f,¢¢g > ()

For tachyonic
instability




Modified Einstein equations

PF
Gu = kT, + Tf,,
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Ricci scalar

Mgr = 1.12 Mg

R = k(e — 3P)
0
v —0.04
—0.08
—0.12

e >> P

""" N\
0.5 1
r/ R
e << P




	Slide 1: Black Holes and Neutron Stars Scalarization in generalised scalar-tensor theories
	Slide 2: Spontaneous scalarization as screening mechanism
	Slide 3: Spontaneous scalarization 
	Slide 4: Tachyonic instability
	Slide 5: Suppressing the instability
	Slide 6: Horndeski gravity
	Slide 7: The minimal theory
	Slide 8: Black holes: the setup
	Slide 9: Black holes: mass and scalar charge
	Slide 10: Black holes: properties of the solutions
	Slide 11: Black holes: domain of existence
	Slide 12: Neutron stars: the setup
	Slide 13: Neutron stars: existence regions
	Slide 14: Neutron stars: existence regions
	Slide 15: Neutron stars: binary pulsars constraints 
	Slide 16: Neutron stars: properties of the star
	Slide 17: Neutron stars: properties of the star
	Slide 18: Small positive values of the Ricci scalar coupling
	Slide 19: Conclusions
	Slide 20: Future perspectives
	Slide 21: Thank you!
	Slide 22: Spontaneous scalarization for NSs
	Slide 23: Spontaneous scalarization for BHs
	Slide 24: Modified Einstein equations
	Slide 25: Ricci scalar

