

More on Stable Ghosts

Alexander Vikman

13.10. 2023

Q
FZU

Ghosts without Runaway Instabilities

> Cédric Deffayet, ${ }^{1,2, *}$ Shinji Mukohyama, ${ }^{3,4, \dagger}$ and Alexander Vikman $\odot^{5, \#}$
> ${ }^{1}$ GgReCO, Institut d'Astrophysique de Paris, UMR 7095, CNRS, Sorbonne Université, $98^{\text {bis }}$ boulevard Arago, 75014 Paris, France ${ }^{2}$ IHES, Le Bois-Marie, 35 route de Chartres, F-91440 Bures-sur-Yvette, France
> ${ }^{3}$ Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502 Kyoto, Japan ${ }^{4}$ Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
> ${ }^{5}$ CEICO-Central European Institute for Cosmology and Fundamental Physics,
> FZU-Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 18221 Prague 8, Czech Republic
(0) (Received 26 August 2021; accepted 24 December 2021; published 24 January 2022)

We present a simple class of mechanical models where a canonical degree of freedom interacts with another one with a negative kinetic term, i.e., with a ghost. We prove analytically that the classical motion of the system is completely stable for all initial conditions, notwithstanding that the conserved Hamiltonian is unbounded from below and above. This is fully supported by numerical computations. Systems with negative kinetic terms often appear in modern cosmology, quantum gravity, and high energy physics and are usually deemed as unstable. Our result demonstrates that for mechanical systems this common lore can be too naive and that living with ghosts can be stable.

DOI: 10.1103/PhysRevLett.128.041301

ournal of Cosmology and Astroparticle Physics An IOP and SISSA journal

JCAP AnNiversary Special Issue

Global and local stability for ghosts coupled to positive energy degrees of freedom

Cédric Deffayet ${ }^{\bullet},^{a}$ Aaron Held ${ }^{(0, c}$ Shinji Mukohyama ${ }^{d, e}$ and Alexander Vikman ${ }^{(} f$
${ }^{a}$ Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
${ }^{b}$ Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
${ }^{c}$ The Princeton Gravity Initiative, Jadwin Hall, Princeton University, Princeton, New Jersey 08544, U.S.A.
${ }^{d}$ Center for Gravitational Physics and Quantum Information,
Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502 Kyoto, Japan
${ }^{e}$ Kavli Institute for the Physics and Mathematics of the Universe (WPI),
The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, 277-8583 Chiba, Japan
${ }^{f}$ CEICO - Central European Institute for Cosmology and Fundamental Physics, FZU - Institute of Physics of the Czech Academy of Sciences,
Na Slovance 1999/2, 18221 Prague 8, Czech Republic

Ghosts

are dynamical degrees of freedom with negative mass i.e. kinetic energy unbounded from below

Why are we interested in ghosts?

Why are we interested in ghosts?

Interesting cosmology: Phantom Dark Energy - super accelerated universe with $\dot{H}>0$, Bouncing universe etc. Inflation with blue spectrum of gravity waves

Why are we interested in ghosts?

Interesting cosmology: Phantom Dark Energy - super accelerated universe with $\dot{H}>0$, Bouncing universe etc. Inflation with blue spectrum of gravity waves

Higher derivative systems have ghosts due to the Ostrogradsky theorem (1848)

Why are we interested in ghosts?

Interesting cosmology: Phantom Dark Energy - super accelerated universe with $\dot{H}>0$, Bouncing universe etc. Inflation with blue spectrum of gravity waves

Higher derivative systems have ghosts due to the Ostrogradsky theorem (1848)
jerk (\dddot{x}) equations are the minimal setting for solutions showing chaotic behaviour (electronic circuits (!) e.g. Chua's circuit)

Why are we interested in ghosts?

Interesting cosmology: Phantom Dark Energy - super accelerated universe with $\dot{H}>0$, Bouncing universe etc. Inflation with blue spectrum of gravity waves

Higher derivative systems have ghosts due to the Ostrogradsky theorem (1848)
jerk (\dddot{x}) equations are the minimal setting for solutions showing chaotic behaviour (electronic circuits (!) e.g. Chua's circuit)

Renormalisation / quantisation of Gravity (Stelle, 1977)
$S=\int M_{\mathrm{Pl}}^{2} R+\alpha R^{2}+\beta W_{\mu \nu \sigma \lambda} W^{\mu \nu \sigma \lambda}$, Weyl tensor $W=\partial \partial g$

Why are we interested in ghosts?

Interesting cosmology: Phantom Dark Energy - super accelerated universe with $\dot{H}>0$, Bouncing universe etc. Inflation with blue spectrum of gravity waves

Higher derivative systems have ghosts due to the Ostrogradsky theorem (1848)
jerk (\dddot{x}) equations are the minimal setting for solutions showing chaotic behaviour (electronic circuits (!) e.g. Chua's circuit)

Renormalisation / quantisation of Gravity (Stelle, 1977)
$S=\int M_{\mathrm{Pl}}^{2} R+\alpha R^{2}+\beta W_{\mu \nu \sigma \lambda} W^{\mu \nu \sigma \lambda}$, Weyl tensor $W=\partial \partial g$
θ
Questions related to entropy and thermodynamics

Why are we interested in ghosts?

Interesting cosmology: Phantom Dark Energy - super accelerated universe with $\dot{H}>0$, Bouncing universe etc. Inflation with blue spectrum of gravity waves

Higher derivative systems have ghosts due to the Ostrogradsky theorem (1848)
jerk (\dddot{x}) equations are the minimal setting for solutions showing chaotic behaviour (electronic circuits (!) e.g. Chua's circuit)

Renormalisation / quantisation of Gravity (Stelle, 1977)
$S=\int M_{\mathrm{Pl}}^{2} R+\alpha R^{2}+\beta W_{\mu \nu \sigma \lambda} W^{\mu \nu \sigma \lambda}$, Weyl tensor $W=\partial \partial g$
Questions related to entropy and thermodynamics
Is it possible to screen gravity?

Why are we interested in ghosts?

Interesting cosmology: Phantom Dark Energy - super accelerated universe with $\dot{H}>0$, Bouncing universe etc. Inflation with blue spectrum of gravity waves

Higher derivative systems have ghosts due to the Ostrogradsky theorem (1848)
jerk (\dddot{x}) equations are the minimal setting for solutions showing chaotic behaviour (electronic circuits (!) e.g. Chua's circuit)

Renormalisation / quantisation of Gravity (Stelle, 1977)
$S=\int M_{\mathrm{Pl}}^{2} R+\alpha R^{2}+\beta W_{\mu \nu \sigma \lambda} W^{\mu \nu \sigma \lambda}$, Weyl tensor $W=\partial \partial g$
Questions related to entropy and thermodynamics
Is it possible to screen gravity?
Is it possible to screen the Cosmological Constant or the energy of quantum vacuum?

Why are we interested in ghosts?

Interesting cosmology: Phantom Dark Energy - super accelerated universe with $\dot{H}>0$, Bouncing universe etc. Inflation with blue spectrum of gravity waves

Higher derivative systems have ghosts due to the Ostrogradsky theorem (1848)
jerk (\dddot{x}) equations are the minimal setting for solutions showing chaotic behaviour (electronic circuits (!) e.g. Chua's circuit)

Renormalisation / quantisation of Gravity (Stelle, 1977)
$S=\int M_{\mathrm{Pl}}^{2} R+\alpha R^{2}+\beta W_{\mu \nu \sigma \lambda} W^{\mu \nu \sigma \lambda}$, Weyl tensor $W=\partial \partial g$
Questions related to entropy and thermodynamics
Is it possible to screen gravity?
Is it possible to screen the Cosmological Constant or the energy of quantum vacuum?

Can gravitons be massive? (Boulware-Deser ghost, 1972, dRGT etc.)

Giuseppe Ludovico De la Grange Tournier

Giuseppe Ludovico De la Grange Tournier

Lagrange Stability

the motion is finite is bounded in phase space -
"Global Stability"

Giuseppe Ludovico De la Grange Tournier

Lagrange Stability

the motion is finite is bounded in phase space -
"Global Stability"

Giuseppe Ludovico De la Grange Tournier

Aleksandr Mikhailovich Lyapunov

Lagrange Stability

the motion is finite -
is bounded in phase space -
"Global Stability"

Giuseppe Ludovico De la Grange Tournier

Lagrange Stability
the motion is finite is bounded in phase space -
"Global Stability"

Aleksandr Mikhailovich Lyapunov
Lyapunov Stability
means that solutions starting
"close enough"
(within a distance δ from each other) remain "close enough" forever (within a distance ϵ from it).

Ostrogradsky Theorem

Ostrogradsky Theorem

modern version for poor people

Ostrogradsky Theorem

modern version for poor people

$$
\frac{1}{M^{2} p^{2}-p^{4}}
$$

Ostrogradsky Theorem

modern version for poor people
$\frac{1}{M^{2} p^{2}-p^{4}}=\frac{1}{M^{2}}\left[\frac{1}{p^{2}}-\frac{1}{p^{2}-M^{2}}\right]$
propagator

Ostrogradsky Theorem

modern version for poor people
$\frac{1}{M^{2} p^{2}-p^{4}}=\frac{1}{M^{2}}\left[\frac{1}{p^{2}}-\frac{1}{p^{2}-M^{2}}\right]$
propagator

Ostrogradsky Theorem

modern version for poor people
$\frac{1}{M^{2} p^{2}-p^{4}}=\frac{1}{M^{2}}\left[\frac{1}{p^{2}}-\frac{1}{p^{2}-M^{2}}\right]$
propagator

Ostrogradsky Theorem

modern version for poor people

$$
\frac{1}{M^{2} p^{2}-p^{4}}=\frac{1}{M^{2}}\left[\frac{1}{p^{2}}-\frac{1}{p^{2}-M^{2}}\right]
$$

propagator

Mikhail Vasilyevich Ostrogradsky

memoire

sUR
LES ÉQUATIONS DIFFÉRENTIELLES relatives ad problève des isopérimetres.
M. OSTROGRADSKY,

$$
\text { La le } 17 \text { (29) norembre } 1848 .
$$

Novs développons dans ce mémoire des conséquences importantes, jusquà présent inaperçues, dérivant de la forme sous laquelle se présente la variation d'une quantité, qui renferme, avec la variable principale ou indépendante, plusieurs fonctions de cette variable et leurs dérivées des différents ordres. Pour faciliter le discours, nous appellerons A la quantité dont il s'agit, et nous donnerons le nom de temps à la variable indépendante. La dernière dénomination se justifie par ce que cette variable joue dans notre mémoire à peu près le méme role que le temps dans la Dynamique.

On sait que la variation de la quantité A qui dépend du temps, de fonctions quelconques du temps et de leurs dérivées, se résout en deux parties distinctes. La première est une différentielle exacte, quelles que soient les fonctions du temps que A renferme, et quelles que soient les variations de ces fonctions. L'autre partie, au contraire, n'est point intégrable, tant que les fonctions et les variations qu'on vient de nommer, restent arbitraires. Mais en les assujettissant à des conditions convenables, non seulement on rendrait cette partie intégrable, mais on pourrait la faire disparaltre si on le jugeait nécessaire. Or, parmi une infinité de manières $\underset{50^{\circ}}{\text { propres à ce der- }}$

Ostrogradsky Theorem

modern version for poor people

propagator

Mikhail Vasilyevich Ostrogradsky

memoire

sUR
LES ÉQUATIONS DIFFÉRENTIELLES relatives au problème des isopérimètres.
M. OSTROGRADSKY

$$
\text { Lu le } 17 \text { (29) novembre } 1848 .
$$

Novs développons dans ce mémoire des conséquences importantes, jusquà présent inaperçues, dérivant de la forme sous laquelle se présente la variation d'une quantité, qui renferme, avec la variable principale ou indépendante, plusieurs fonctions de cette variable et leurs dérivées des différents ordres. Pour faciliter le discours, nous appellerons A la quantité dont il s'agit, et nous donnerons le nom de temps à la variable indépendante. La dernière dénomination se justifie par ce que cette variable joue dans notre mémoire à peu près le méme role que le temps dans la Dynamique.

On sait que la variation de la quantité A qui dépend du-temps, de fonctions quelconques du temps et de leurs dérivées, se résout en deux parties distinctes. La première est une différentielle exacte, quelles que soient les fonctions du temps que A renferme, et quelles que soient les variations de ces fonctions. L'autre partie, au contraire, n'est point intégrable, tant que les fonctions et les variations qu'on vient de nommer, restent arbitraires. Mais en les assujettissant à des conditions convenables, non seulement on rendrait cette partie intégrable, mais on pourrait la faire disparaltre si on le jugeait nécessaire. Or, parmi une infinité de manières $\underset{50^{\circ}}{\text { propres à ce der- }}$

Ostrogradsky Theorem

modern version for poor people

propagator

For Lagrangian $L(q, \dot{q}, \ddot{q})$ depending on acceleration $a=\ddot{q}$

Mikhail Vasilyevich Ostrogradsky

memoire

sUR
LES ÉQUATIONS DIFFÉRENTIELLES relatives au problème des isopérimètres.
M. OSTROGRADSKY

$$
\text { La le } 17 \text { (29) norembre } 1848 .
$$

Novs développons dans ce mémoire des conséquences importantes, jusquà présent inaperçues, dérivant de la forme sous laquelle se présente la variation d'une quantité, qui renferme, avec la variable principale ou indépendante, plusieurs fonctions de cette variable et leurs dérivées des différent ordres. Pour faciliter le discours, nous appellerons A la quantité dont il s'agit, et nous donnerons le nom de temps à la variable indépendante. La dernière dénomination se justifie par ce que cette variable joue dans notre mémoire à peu près le méme role que le temps dans la Dynamique.

On sait que la variation de la quantité A qui dépend du temps, de fonctions quelconques du temps et de leurs dérivées, se résout en deux parties distinctes. La première est une différentielle exacte, quelles que soient les fonctions du temps que A renferme, et quelles que soient les variations de ces fonctions. L'autre partie, au contraire, n'est point intégrable, tant que les fonctions et les variations qu'on vient de nommer, restent arbitraires. Mais en les assujettissant à des conditions convenables, non seulement on rendrait cette partie intégrable, mais on pourrait la faire disparattre si on le jugeait nécessaire. Or, parmi une infinité de manières propres à ce der-

Ostrogradsky Theorem

modern version for poor people

$$
\frac{1}{M^{2} p^{2}-p^{4}}=\frac{1}{M^{2}}\left[\frac{1}{p^{2}}-\frac{1}{p^{2}-M^{2}}\right]
$$

propagator

For Lagrangian $L(q, \dot{q}, \ddot{q})$ depending on acceleration $a=\ddot{q}$
canonical momentum for $Q_{1}=q$

$$
P_{1}=\frac{\partial L}{\partial \dot{q}}-\frac{d}{d t} \frac{\partial L}{\partial \ddot{q}}
$$

Mikhail Vasilyevich Ostrogradsky

memoire

sUR
LES ÉQUATIONS DIFFÉRENTIELLES relatives ac probleme des isopérimetres.
M. OSTROGRADSKY

$$
\text { Lu le } 17 \text { (29) novembre } 1848 .
$$

Novs développons dans ce mémoire des conséquences importantes, jusquà présent inaperçues, dérivant de la forme sous laquelle se présente la variation d'une quantité, qui renferme, avec la variable principale ou indépendante, plusieurs fonctions de cette variable et leurs dérivées des différent ordres. Pour faciliter le discours, nous appellerons A la quantité dont il s'agit, et nous donnerons le nom de temps à la variable indépendante. La dernière dénomination se justifie par ce que cette variable joue dans notre mémoire à peu près le mème role que le temps dans la Dynamique.

On sait que la variation de la quantité A qui dépend du temps, de fonctions quelconques du temps et de leurs dérivées, se résout en deux parties distinctes. La première est une différentielle exacte, quelles que soient les fonctions du temps que A renferme, et quelles que soient les variations de ces fonctions. L'autre partie, au contraire, n'est point intégrable, tant que les fonctions et les variations qu'on vient de nommer, restent arbitraires. Mais en les assujettissant à des conditions convenables, non seulement on rendrait cette partie intégrable, mais on pourrait la faire disparaltre si on le jugeait nécessaire. Or, parmi une infinité de manières $\underset{50^{\circ}}{\text { propres à ce der- }}$

Ostrogradsky Theorem

modern version for poor people

$$
\frac{1}{M^{2} p^{2}-p^{4}}=\frac{1}{M^{2}}\left[\frac{1}{p^{2}}-\frac{1}{p^{2}-M^{2}}\right]
$$

propagator

For Lagrangian $L(q, \dot{q}, \ddot{q})$ depending on acceleration $a=\ddot{q}$
canonical momentum for $Q_{1}=q$

$$
P_{1}=\frac{\partial L}{\partial \dot{q}}-\frac{d}{d t} \frac{\partial L}{\partial \ddot{q}}
$$

canonical momentum for $Q_{2}=\dot{q}$

$$
P_{2}=\frac{\partial L}{\partial \ddot{q}}
$$

Mikhail Vasilyevich Ostrogradsky

memoire

sUR
LES ÉQUATIONS DIFFÉRENTIELLES relatives au problème des isopérimetres.
M. OSTROGRADSKY

$$
\text { Lu le } 17 \text { (29) novembre } 1848 .
$$

Nous développons dans ce mémoire des conséquences importantes, jusqu’à présent inaperçues, dérivant de la forme sous laquelle se présente la variation d'une quantité, qui renferme, avec la variable principale ou indépendante, plusieurs fonctions de cette variable et leurs dérivées des différents ordres. Pour faciliter le discours, nous appellerons A la quantité dont il s'agit, et nous donnerons le nom de temps à la variable indépendante. La dernière dénomination se justifie par ce que cette variable joue dans notre mémoire à peu près le méme role que le temps dans la Dynamique.

On sait que la variation de la quantité A qui dépend du• temps, de fonctions quelconques du temps et de leurs dérivées, se résout en deux par ties distinctes. La première est une différentielle exacte, quelles que soient les fonctions du temps que A renferme, et quelles que soient les variations de ces fonctions. L'autre partie, au contraire, n'est point intégrable, tant que les fonctions et les variations qu'on vient de nommer, restent arbitraires. Mais en les assujettissant à des conditions convenables, non seulement on rendrait cette partie intégrable, mais on pourrait la faire disparaltre si on le jugeait nécessaire. Or, parmi une infinité de manières $\underset{50^{\circ}}{\text { propres à ce der- }}$

Ostrogradsky Theorem

modern version for poor people

$$
\frac{1}{M^{2} p^{2}-p^{4}}=\frac{1}{M^{2}}\left[\frac{1}{p^{2}}-\frac{1}{p^{2}-M^{2}}\right]
$$

propagator

For Lagrangian $L(q, \dot{q}, \ddot{q})$ depending on acceleration $a=\ddot{q}$
canonical momentum for $Q_{1}=q$

$$
\begin{aligned}
& P_{1}=\frac{\partial L}{\partial \dot{q}}-\frac{d}{d t} \frac{\partial L}{\partial \ddot{q}} \\
& \quad H=P_{1} \dot{Q}_{1}+P_{2} \dot{Q}_{2}-L
\end{aligned}
$$

Mikhail Vasilyevich Ostrogradsky

memoire

sm
LES ÉQUATIONS DIFFÉRENTIELLES relatives au problème des isopérimetres.
M. OSTROGRADSKY, La le 17 (29) novembre 1848.
Nous développons dans ce mémoire des conséquences importantes, jusqu’à présent inaperçues, dérivant de la forme sous laquelle se présente la variation d'une quantité, qui renferme, avec la variable principale ou indépendante, plusieurs fonctions de cette variable et leurs dérivées des différents ordres. Pour faciliter le discours, nous appellerons A la quantité dont il s'agit, et nous donnerons le nom de temps à la variable indépendante. La dernière dénomination se justifie par ce que cette variable joue dans notre mémoire à peu près le méme role que le temps dans la Dynamique.

On sait que la variation de la quantité A qui dépend du-temps, de fonctions quelconques du temps et de leurs dérivées, se résout en deux parties distinctes. La première est une différentielle exacte, quelles que soient les fonctions du temps que A renferme, et quelles que soient les variations de ces fonctions. L'autre partie, au contraire, n'est point intégrable, tant que les fonctions et les variations qu'on vient de nommer, restent arbitraires. Mais en les assujettissant à des conditions convenables, non seulement on rendrait cette partie intégrable, mais on pourrait la faire disparaltre si on le jugeait nécessaire. Or, parmi une infinité de manières $\underset{50^{\circ}}{\text { propres à ce der- }}$

Ostrogradsky Theorem

modern version for poor people

$$
\frac{1}{M^{2} p^{2}-p^{4}}=\frac{1}{M^{2}}\left[\frac{1}{p^{2}}-\frac{1}{p^{2}-M^{2}}\right]
$$

propagator

For Lagrangian $L(q, \dot{q}, \ddot{q})$ depending on acceleration $a=\ddot{q}$
canonical momentum for $Q_{1}=q$
canonical momentum for $Q_{2}=\dot{q}$

$$
\begin{gathered}
P_{1}=\frac{\partial L}{\partial \dot{q}}-\frac{d}{d t} \frac{\partial L}{\partial \ddot{q}} \quad P_{2}=\frac{\partial L}{\partial \ddot{q}} \\
H=P_{1} \dot{Q}_{1}+P_{2} \dot{Q}_{2}-L \\
H=P_{1} Q_{2}+P_{2} a\left(P_{2}, Q_{1}, Q_{2}\right)-L\left(Q_{1}, Q_{2}, a\left(P_{2}, Q_{1}, Q_{2}\right)\right)
\end{gathered}
$$

Mikhail Vasilyevich Ostrogradsky

memoire

sUR
LES ÉQUATIONS DIFFÉRENTIELLES relatives au problème des isopérimetres.
M. OSTROGRADSKY,

$$
\text { Lu le } 17 \text { (29) novembre } 1848 .
$$

Nous développons dans ce mémoire des conséquences importantes, jusqu’à présent inaperçues, dérivant de la forme sous laquelle se présente la variation d'une quantité, qui renferme, avec la variable principale ou indépendante, plusieurs fonctions de cette variable et leurs dérivées des différents ordres. Pour faciliter le discours, nous appellerons A la quantité dont il s'agit, et nous donnerons le nom de temps à la variable indépendante. La dernière dénomination se justifie par ce que cette variable joue dans notre mémoire à peu près le méme role que le temps dans la Dynamique.

On sait que la variation de la quantité A qui dépend du•temps, de fonctions quelconques du temps et de leurs dérivées, se résout en deux parties distinctes. La première est une différentielle exacte, quelles que soient les fonctions du temps que A renferme, et quelles que soient les variations de ces fonctions. L'autre partie, au contraire, n'est point intégrable, tant que les fonctions et les variations qu'on vient de nommer, restent arbitraires. Mais en les assujettissant a des conditions convenables, non seulement on rendrait cette partie intégrable, mais on pourrait la faire disparaltre si on le jugeait nécessaire. Or, parmi une infinité de manières propres à ce der-

Ostrogradsky Theorem

modern version for poor people

$$
\frac{1}{M^{2} p^{2}-p^{4}}=\frac{1}{M^{2}}\left[\frac{1}{p^{2}}-\frac{1}{p^{2}-M^{2}}\right]
$$

propagator

For Lagrangian $L(q, \dot{q}, \ddot{q})$ depending on acceleration $a=\ddot{q}$
canonical momentum for $Q_{1}=q$

$$
\begin{gathered}
P_{1}=\frac{\partial L}{\partial \dot{q}}-\frac{d}{d t} \frac{\partial L}{\partial \ddot{q}} \quad P_{2}=\frac{\partial L}{\partial \ddot{q}} \\
H=P_{1} \dot{Q}_{1}+P_{2} \dot{Q}_{2}-L \\
H=P_{1} Q_{2}+P_{2} a\left(P_{2}, Q_{1}, Q_{2}\right)-L\left(Q_{1}, Q_{2}, a\left(P_{2}, Q_{1}, Q_{2}\right)\right)
\end{gathered}
$$

Mikhail Vasilyevich Ostrogradsky

memoire

sUR
LES ÉQUATIONS DIFFÉRENTIELLES relatives au problème des isopérimètres.
m. OSTROGRADSKY,

$$
\text { La le } 17 \text { (29) novembre } 1848 .
$$

Nous développons dans ce mémoire des conséquences importantes, jusquà présent inaperçues, dérivant de la forme sous laquelle se présente la variation d'une quantité, qui renferme, avec la variable principale ou indépendante, plusieurs fonctions de cette variable et leurs dérivées des différents ordres. Pour faciliter le discours, nous appellerons A la quantité dont il s'agit, et nous donnerons le nom de temps à la variable indépendante. La dernière dénomination se justifie par ce que cette variable joue dans notre mémoire à peu près le méme role que le temps dans la Dynamique.

On sait que la variation de la quantité A qui dépend du•temps, de fonctions quelconques du temps et de leurs dérivées, se résout en deux parties distinctes. La première est une différentielle exacte, quelles que soient les fonctions du temps que A renferme, et quelles que soient les variations de ces fonctions. L'autre partie, au contraire, n'est point intégrable, tant que les fonctions et les variations qu'on vient de nommer, restent arbitraires. Mais en les assujettissant à des conditions convenables, non seulement on rendrait cette partie intégrable, mais on pourrait la faire disparaltre si on le jugeait nécessaire. Or, parmi une infinité de manières $\underset{50^{\circ}}{\text { propres à ce der- }}$

Hamiltonian linear in P_{1} - unbounded from above and from below!

Mechanical analogy

Mechanical analogy

$$
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2} q^{2}}{2}
$$

Mechanical analogy

$$
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2} q^{2}}{2}
$$

e.g. action for cosmological perturbations

$$
S[\mathcal{R}]=\frac{1}{2} \int d \tau d^{3} \mathbf{x} Z\left(\left(\mathcal{R}^{\prime}\right)^{2}-c_{\mathrm{S}}^{2}\left(\partial_{i} \mathcal{R}\right)^{2}\right)
$$

Mechanical analogy

$$
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2} q^{2}}{2}
$$

e.g. action for cosmological perturbations

$$
\begin{gathered}
S[\mathcal{R}]=\frac{1}{2} \int d \tau d^{3} \mathbf{x} Z\left(\left(\mathcal{R}^{\prime}\right)^{2}-c_{S}^{2}\left(\partial_{i} \mathcal{R}\right)^{2}\right) \\
H_{\mathbf{k}}=\frac{\left|P_{\mathbf{k}}\right|^{2}}{2 Z}+\frac{Z c_{S}^{2} K^{2}\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{2}
\end{gathered}
$$

Mechanical analogy

$$
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2} q^{2}}{2}
$$

e.g. action for cosmological perturbations

$$
\begin{aligned}
& S[\mathcal{R}]=\frac{1}{2} \int d \tau d^{3} \mathbf{x} Z\left(\left(\mathcal{R}^{\prime}\right)^{2}-c_{\mathrm{S}}^{2}\left(\partial_{i} \mathcal{R}\right)^{2}\right) \\
& H_{\mathbf{k}}=\frac{\left|P_{\mathbf{k}}\right|^{2}}{2 Z}+\frac{Z c_{S}^{2} k^{2}\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{2} \\
& Z \leftrightarrow m
\end{aligned}
$$

Mechanical analogy

$$
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2} q^{2}}{2}
$$

e.g. action for cosmological perturbations

$$
\begin{gathered}
S[\mathcal{R}]=\frac{1}{2} \int d \tau d^{3} \mathbf{x} Z\left(\left(\mathcal{R}^{\prime}\right)^{2}-c_{\mathrm{S}}^{2}\left(\partial_{i} \mathcal{R}\right)^{2}\right) \\
H_{\mathbf{k}}=\frac{\left|P_{\mathbf{k}}\right|^{2}}{2 Z}+\frac{Z c_{S}^{2} K^{2}\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{2} \\
Z \leftrightarrow m \quad \omega^{2} \leftrightarrow c_{s}^{2} k^{2}
\end{gathered}
$$

Ghosts and gradient instabilities

Ghosts and gradient instabilities

$$
S[\mathcal{R}]=\frac{1}{2} \int d \tau d^{3} \times Z\left(\left(\mathcal{R}^{\prime}\right)^{2}-c_{\mathrm{S}}^{2}\left(\partial_{i} \mathcal{R}\right)^{2}\right)
$$

Ghosts and gradient instabilities

$$
\begin{gathered}
S[\mathcal{R}]=\frac{1}{2} \int d \tau d^{3} \mathbf{x} Z\left(\left(\mathcal{R}^{\prime}\right)^{2}-c_{\mathrm{S}}^{2}\left(\partial_{i} \mathcal{R}\right)^{2}\right) \\
H_{\mathbf{k}}=\frac{\left|P_{\mathbf{k}}\right|^{2}}{2 Z}+\frac{Z c_{S}^{2} k^{2}\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{2}
\end{gathered}
$$

Ghosts and gradient instabilities

$$
\begin{gathered}
S[\mathcal{R}]=\frac{1}{2} \int d \tau d^{3} \mathbf{x} Z\left(\left(\mathcal{R}^{\prime}\right)^{2}-c_{\mathrm{S}}^{2}\left(\partial_{i} \mathcal{R}\right)^{2}\right) \\
H_{\mathbf{k}}=\frac{\left|P_{\mathbf{k}}\right|^{2}}{2 Z}+\frac{Z c_{S}^{2} k^{2}\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{2}
\end{gathered}
$$

Gredicent unstability $c_{s}^{2}<0$

Ghosts and gradient instabilities

$$
\begin{aligned}
& S[\mathcal{R}]=\frac{1}{2} \int d \tau d^{3} \mathbf{x} Z\left(\left(\mathcal{R}^{\prime}\right)^{2}-c_{S}^{2}\left(\partial_{i} \mathcal{R}\right)^{2}\right) \\
& H_{\mathbf{k}}
\end{aligned}=\frac{\left|P_{\mathbf{k}}\right|^{2}}{2 Z}+\frac{Z c_{S}^{2} k^{2}\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{2} \quad R_{\mathbf{k}} \sim \exp \left(\left|c_{s}\right| k \tau\right) .
$$

Greadient insstability $c_{s}^{2}<0$

Ghosts and gradient instabilities

$$
\begin{aligned}
& S[\mathcal{R}]=\frac{1}{2} \int d \tau d^{3} \mathbf{x} Z\left(\left(\mathcal{R}^{\prime}\right)^{2}-c_{\mathrm{S}}^{2}\left(\partial_{i} \mathcal{R}\right)^{2}\right) \\
& H_{\mathbf{k}}=\frac{\left|P_{\mathbf{k}}\right|^{2}}{2 Z}+\frac{Z c_{S}^{2} k^{2}\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{2} \quad R_{\mathbf{k}} \sim \exp \left(\left|c_{s}\right| k \tau\right)
\end{aligned}
$$

Gradient instability $c_{s}^{2}<0$

ghost $Z(t)<0$

Ghosts and gradient instabilities

$$
\begin{aligned}
& S[\mathcal{R}]=\frac{1}{2} \int d \tau d^{3} \mathbf{x} Z\left(\left(\mathcal{R}^{\prime}\right)^{2}-c_{\mathrm{S}}^{2}\left(\partial_{i} \mathcal{R}\right)^{2}\right) \\
& H_{\mathbf{k}}
\end{aligned}=\frac{\left|P_{\mathbf{k}}\right|^{2}}{2 Z}+\frac{Z c_{S}^{2} k^{2}\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{2} \quad R_{\mathbf{k}} \sim \exp \left(\left|c_{s}\right| k \tau\right) . l
$$

Gradient instability $c_{s}^{2}<0$

ghost $Z(t)<0$
ghosts - modes (oscillators) with the negative mass

Ghosts and gradient instabilities

$$
\begin{aligned}
& S[\mathcal{R}]=\frac{1}{2} \int d \tau d^{3} \mathbf{x} Z\left(\left(\mathcal{R}^{\prime}\right)^{2}-c_{\mathrm{S}}^{2}\left(\partial_{i} \mathcal{R}\right)^{2}\right) \\
& H_{\mathbf{k}}
\end{aligned}=\frac{\left|P_{\mathbf{k}}\right|^{2}}{2 Z}+\frac{Z c_{S}^{2} k^{2}\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{2} \quad R_{\mathbf{k}} \sim \exp \left(\left|c_{s}\right| k \tau\right) . l
$$

Gredicent unstability $c_{s}^{2}<0$

ghest $Z(t)<0$
ghosts - modes (oscillators) with the negative mass

Ghosts and gradient instabilities

$$
S[\mathcal{R}]=\frac{1}{2} \int d \tau d^{3} \times Z\left(\left(\mathcal{R}^{\prime}\right)^{2}-c_{\mathrm{S}}^{2}\left(\partial_{i} \mathcal{R}\right)^{2}\right)
$$

$$
H_{\mathbf{k}}=\frac{\left|P_{\mathbf{k}}\right|^{2}}{2 Z}+\frac{Z c_{S}^{2} k^{2}\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{2}
$$

$$
R_{\mathbf{k}} \sim \exp \left(\left|c_{s}\right| k \tau\right)
$$

Gredient iusstabilityy $c_{s}^{2}<0$

ghest $Z(t)<0$
ghosts - modes (oscillators) with the negative mass

Instability

$$
E_{t o t}=E_{N}+E_{G} \quad \begin{aligned}
& \text { normal matter } \\
& \text { ghosty matter }
\end{aligned}
$$

Instability

$$
E_{t o t}=E_{N}+E_{G} \quad \begin{aligned}
& \text { normal matter } \\
& \text { ghosty matter }
\end{aligned}
$$

Instability

Instability

How Unstable?

How Unstable?

$$
H=\frac{P^{2}}{2}+\frac{Q^{2}}{2}
$$

How Unstable?

$$
\begin{aligned}
& H=\frac{P^{2}}{2}+\frac{Q^{2}}{2} \\
& -\left(\frac{p^{2}}{2}+\frac{\omega^{2} q^{2}}{2}\right)
\end{aligned}
$$

How Unstable?
$H=\frac{P^{2}}{2}+\frac{Q^{2}}{2}$
$\Theta\left(\frac{p^{2}}{2}+\frac{\omega^{2} q^{2}}{2}\right)$

How Unstable?

$$
\begin{aligned}
& H=\frac{P^{2}}{2}+\frac{Q^{2}}{2}+\frac{\lambda}{2} q^{2} Q^{2} \\
& -\left(\frac{p^{2}}{2}+\frac{\omega^{2} q^{2}}{2}\right)
\end{aligned}
$$

Figure 2: The growth of the logarithm of the energy of the observer is depicted
for $\lambda=4, \omega=2.3$ and vacuum initial data (8) and (9).

Figure 3: The growth of the logarithm of the energy of the observer is depicted for $\lambda=2.35, \omega=2.3$ and vacuum initial data (8) and (9). Here we see that the instability arises only much later after around a 100 of the periods of oscillation for the observer.

Our Stable PRL Model

Hamiltonian

$$
H=\frac{1}{2}\left(p_{x}^{2}+x^{2}\right)-\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)+V_{I}(x, y)
$$

Our Stable PRL Model

Hamiltonian

$$
H=\frac{1}{2}\left(p_{x}^{2}+x^{2}\right)-\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)+V_{I}(x, y)
$$

Normal Oscillator

Our Stable PRL Model

Hamiltonian

$$
\begin{aligned}
& H= \frac{1}{2}\left(p_{x}^{2}+x^{2}\right)-\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)+V_{I}(x, y) \\
& \text { Normal Oscillator } \quad \text { Ghosty Oscillator }
\end{aligned}
$$

Our Stable PRL Model

Hamiltonian

$$
\begin{aligned}
& H= \frac{1}{2}\left(p_{x}^{2}+x^{2}\right)-\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)+V_{I}(x, y) \\
& \text { Normal Oscillator } \quad \text { Ghosty Oscillator } \quad \text { Interaction Potential }
\end{aligned}
$$

Our Stable PRL Model

Hamiltonian

$$
H=\frac{1}{2}\left(p_{x}^{2}+x^{2}\right)-\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)+V_{I}(x, y)
$$

$$
V_{I}(x, y)=\frac{\lambda}{\sqrt{\left[1+2\left(y^{2}+x^{2}\right)+\left(y^{2}-x^{2}\right)^{2}\right]}}
$$

Our Stable PRL Model

Hamiltonian

$$
\begin{aligned}
& H=\frac{1}{2}\left(p_{x}^{2}+x^{2}\right) \Theta \frac{1}{2}\left(p_{y}^{2}+y^{2}\right)+V_{I}(x, y) \\
& \text { Normal Oscillator } \\
& \text { Ghosty Oscillator } \\
& \text { Interaction Potential } \\
& V_{I}(x, y)=\frac{(\lambda) \text { couping Constant }}{\sqrt{\left[1+2\left(y^{2}+x^{2}\right)+\left(y^{2}-x^{2}\right)^{2}\right]}}
\end{aligned}
$$

Our Stable PRL Model

Hamiltonian

$$
\begin{gathered}
H=\frac{1}{2}\left(p_{x}^{2}+x^{2}\right)-\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)+V_{I}(x, y) \\
V_{I}(x, y)=\frac{\lambda \text { coupling Constant }}{\sqrt{\left[1+2\left(y^{2}+x^{2}\right)+\left(y^{2}-x^{2}\right)^{2}\right]}} \\
\text { Intermal Oscillator } \\
\text { Inosty Oscillator } \begin{array}{c}
\text { Interaction Potential is bounded } 0<V_{I}(x, y) \lambda^{-1} \leq 1
\end{array},
\end{gathered}
$$

Potential

$$
V_{I}(x, y)=\lambda\left[\left(x^{2}-y^{2}-1\right)^{2}+4 x^{2}\right]^{-1 / 2}
$$

Potential

$$
V_{I}(x, y)=\lambda\left[\left(x^{2}-y^{2}-1\right)^{2}+4 x^{2}\right]^{-1 / 2}
$$

$$
V_{t o t}=V_{I}+\frac{1}{2}\left(x^{2}-y^{2}\right)
$$

Potential

$$
V_{I}(x, y)=\lambda\left[\left(x^{2}-y^{2}-1\right)^{2}+4 x^{2}\right]^{-1 / 2}
$$

Potential

$$
V_{I}(x, y)=\lambda\left[\left(x^{2}-y^{2}-1\right)^{2}+4 x^{2}\right]^{-1 / 2}
$$

Potential

$$
V_{I}(x, y)=\lambda\left[\left(x^{2}-y^{2}-1\right)^{2}+4 x^{2}\right]^{-1 / 2}
$$

$$
V_{t o t}=\frac{\omega_{x}^{2}}{2} x^{2}-\frac{\omega_{y}^{2}}{2} y^{2}+\lambda\left(x^{4}+4 y^{2} x^{2}+y^{4}\right)+\ldots
$$

Potential

$$
V_{I}(x, y)=\lambda\left[\left(x^{2}-y^{2}-1\right)^{2}+4 x^{2}\right]^{-1 / 2}
$$

$$
\begin{gathered}
V_{t o t}=\frac{\omega_{x}^{2}}{2} x^{2}-\frac{\omega_{y}^{2}}{2} y^{2}+\lambda\left(x^{4}+4 y^{2} x^{2}+y^{4}\right)+\ldots \\
\omega_{x}^{2}=1-2 \lambda, \quad \text { and } \quad \omega_{y}^{2}=1+2 \lambda
\end{gathered}
$$

Potential

$$
V_{I}(x, y)=\lambda\left[\left(x^{2}-y^{2}-1\right)^{2}+4 x^{2}\right]^{-1 / 2}
$$

$$
\begin{gathered}
V_{\text {tot }}=\frac{\omega_{x}^{2}}{2} x^{2}-\frac{\omega_{y}^{2}}{2} y^{2}+\lambda\left(x^{4}+4 y^{2} x^{2}+y^{4}\right)+\ldots \\
\omega_{x}^{2}=1-2 \lambda, \quad \text { and } \quad \omega_{y}^{2}=1+2 \lambda
\end{gathered}
$$

Potential

$$
V_{I}(x, y)=\lambda\left[\left(x^{2}-y^{2}-1\right)^{2}+4 x^{2}\right]^{-1 / 2}
$$

$$
\begin{gathered}
V_{\text {tot }}=\frac{\omega_{x}^{2}}{2} x^{2}-\frac{\omega_{y}^{2}}{2} y^{2}+\lambda\left(x^{4}+4 y^{2} x^{2}+y^{4}\right)+\ldots \\
\omega_{x}^{2}=1-2 \lambda, \quad \text { and } \quad \omega_{y}^{2}=1+2 \lambda
\end{gathered}
$$

Stable motion not at a minimum, but at a saddle point of the potential!

Potential

$$
V_{I}(x, y)=\lambda\left[\left(x^{2}-y^{2}-1\right)^{2}+4 x^{2}\right]^{-1 / 2}
$$

$$
\begin{gathered}
V_{t o t}=\frac{\omega_{x}^{2}}{2} x^{2}-\frac{\omega_{y}^{2}}{2} y^{2}+\lambda\left(x^{4}+4 y^{2} x^{2}+y^{4}\right)+\ldots \\
\omega_{x}^{2}=1-2 \lambda, \quad \text { and } \quad \omega_{y}^{2}=1+2 \lambda
\end{gathered}
$$

Stable motion not at a minimum, but at a saddle point of the potential!

Numerical Solutions

Numerical Solutions

Numerical Solutions

Numerical Solutions

Why is it stable?

Why is it stable?

What is the black magic?

First Integral and the Power of Imagination

First Integral and the Power of Imagination

$C=K^{2}+\left(p_{x}^{2}+x^{2}\right)-\left(x^{2}-y^{2}-1\right) V_{I}(x, y)$
generator for hyperbolic rotations $K=p_{y} x+p_{x} y$

$$
\frac{d C}{d t}=0
$$

First Integral and the Power of Imagination

$C=K^{2}+\left(p_{x}^{2}+x^{2}\right)-\left(x^{2}-y^{2}-1\right) V_{I}(x, y)$
generator for hyperbolic rotations $K=p_{y} x+p_{x} y$

$$
\frac{d C}{d t}=0
$$

One can obtain our system via complex canonical

$$
\begin{aligned}
& \text { transformation } y=i \tilde{y}, \quad \text { and } \quad p_{y}=-i \tilde{p}_{y} \\
& \qquad \text { (so that }\left[y, p_{y}\right]=\left[\tilde{y}, \tilde{p}_{y}\right]=1 \text { etc.) }
\end{aligned}
$$

from a ghost-free integrable system introduced by

First Integral and the Power of Imagination

$C=K^{2}+\left(p_{x}^{2}+x^{2}\right)-\left(x^{2}-y^{2}-1\right) V_{I}(x, y)$
generator for hyperbolic rotations $K=p_{y} x+p_{x} y$

$$
\frac{d C}{d t}=0
$$

One can obtain our system via complex canonical

$$
\begin{aligned}
& \text { transformation } y=i \tilde{y}, \quad \text { and } \quad p_{y}=-i \tilde{p}_{y} \\
& \qquad \text { (so that }\left[y, p_{y}\right]=\left[\tilde{y}, \tilde{p}_{y}\right]=1 \text { etc.) }
\end{aligned}
$$

from a ghost-free integrable system introduced by

First Integral and the Power of Imagination

$C=K^{2}+\left(p_{x}^{2}+x^{2}\right)-\left(x^{2}-y^{2}-1\right) V_{I}(x, y)$
generator for hyperbolic rotations $K=p_{y} x+p_{x} y$

$$
\frac{d C}{d t}=0
$$

One can obtain our system via complex canonical

$$
\begin{aligned}
& \text { transformation } y=i \tilde{y}, \quad \text { and } \quad p_{y}=-i \tilde{p}_{y} \\
& \qquad \text { (so that }\left[y, p_{y}\right]=\left[\tilde{y}, \tilde{p}_{y}\right]=1 \text { etc.) }
\end{aligned}
$$

from a ghost-free integrable system introduced by

First Integral and the Power of Imagination

$C=K^{2}+\left(p_{x}^{2}+x^{2}\right)-\left(x^{2}-y^{2}-1\right) V_{I}(x, y)$
generator for hyperbolic rotations $K=p_{y} x+p_{x} y$

$$
\frac{d C}{d t}=0
$$

One can obtain our system via complex canonical

$$
\begin{aligned}
& \text { transformation } y=i \tilde{y}, \quad \text { and } \quad p_{y}=-i \tilde{p}_{y} \\
& \qquad \text { (so that }\left[y, p_{y}\right]=\left[\tilde{y}, \tilde{p}_{y}\right]=1 \text { etc.) }
\end{aligned}
$$

from a ghost-free integrable system introduced by
Darboux in 1901

First Integral and the Power of Imagination

$C=K^{2}+\left(p_{x}^{2}+x^{2}\right)-\left(x^{2}-y^{2}-1\right) V_{I}(x, y)$
generator for hyperbolic rotations $K=p_{y} x+p_{x} y$

$$
\frac{d C}{d t}=0
$$

One can obtain our system via complex canonical

$$
\begin{aligned}
& \text { transformation } y=i \tilde{y}, \quad \text { and } \quad p_{y}=-i \tilde{p}_{y} \\
& \qquad \text { (so that }\left[y, p_{y}\right]=\left[\tilde{y}, \tilde{p}_{y}\right]=1 \text { etc.) }
\end{aligned}
$$

from a ghost-free integrable system introduced by
Darboux in 1901

First Integral and the Power of Imagination

$C=K^{2}+\left(p_{x}^{2}+x^{2}\right)-\left(x^{2}-y^{2}-1\right) V_{I}(x, y)$
generator for hyperbolic rotations $K=p_{y} x+p_{x} y$

$$
\frac{d C}{d t}=0
$$

One can obtain our system via complex canonical transformation $y=i \tilde{y}, \quad$ and $\quad p_{y}=-i \tilde{p}_{y}$

$$
\text { (so that }\left[y, p_{y}\right]=\left[\tilde{y}, \tilde{p}_{y}\right]=1 \text { etc.) }
$$

Jean-Gaston Darboux FAS MIF FRS FRSE

Joseph Liouville FRS FRSE FAS
from a ghost-free integrable system introduced by
Darboux in 1901

First Integral and the Power of Imagination

$C=K^{2}+\left(p_{x}^{2}+x^{2}\right)-\left(x^{2}-y^{2}-1\right) V_{I}(x, y)$
generator for hyperbolic rotations $K=p_{y} x+p_{x} y$

$$
\frac{d C}{d t}=0
$$

One can obtain our system via complex canonical transformation $y=i \tilde{y}, \quad$ and $\quad p_{y}=-i \tilde{p}_{y}$

$$
\text { (so that }\left[y, p_{y}\right]=\left[\tilde{y}, \tilde{p}_{y}\right]=1 \text { etc.) }
$$

Joseph Liouville FRS FRSE FAS
from a ghost-free integrable system introduced by
Darboux in 1901

Par J. LIOUVILLE.

First Integral and the Power of Imagination

$C=K^{2}+\left(p_{x}^{2}+x^{2}\right)-\left(x^{2}-y^{2}-1\right) V_{I}(x, y)$
generator for hyperbolic rotations $K=p_{y} x+p_{x} y$

$$
\frac{d C}{d t}=0
$$

One can obtain our system via complex canonical transformation $y=i \tilde{y}, \quad$ and $\quad p_{y}=-i \tilde{p}_{y}$

$$
\text { (so that }\left[y, p_{y}\right]=\left[\tilde{y}, \tilde{p}_{y}\right]=1 \text { etc.) }
$$

Joseph Liouville FRS FRSE FAS
from a ghost-free integrable system introduced by
Darboux in 1901 Joseph Liouville 1846

Par J. LIOUVILLE.

First Integral and the Power of Imagination

$$
C=K^{2}+\left(p_{x}^{2}+x^{2}\right)-\left(x^{2}-y^{2}-1\right) V_{I}(x, y)
$$

generator for hyperbolic rotations $K=p_{y} x+p_{x} y$

$$
\frac{d C}{d t}=0
$$

One can obtain our system via complex canonical transformation $y=i \tilde{y}, \quad$ and $\quad p_{y}=-i \tilde{p}_{y}$

$$
\text { (so that }\left[y, p_{y}\right]=\left[\tilde{y}, \tilde{p}_{y}\right]=1 \text { etc.) }
$$

Joseph Liouville FRS FRSE FAS
from a ghost-free integrable system introduced by
Darboux in 1901 Joseph Liouville 1846

Is there any symmetry behind this conserved quantity C ?

Par J. LIOUVILLE.

Another First Integral: \mathscr{E}

$$
\mathscr{E}=C-H=\Sigma+\left(y^{2}-x^{2}\right) V_{I}(x, y)
$$

Another First Integral: \mathscr{E}

$$
\mathscr{E}=C-H=\Sigma+\left(y^{2}-x^{2}\right) V_{I}(x, y)
$$

where

$$
\Sigma=\left(p_{y} x+p_{x} y\right)^{2}+\frac{1}{2}\left(p_{x}^{2}+x^{2}\right)+\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)
$$

Another First Integral: \mathscr{E}

$$
\mathscr{E}=C-H=\Sigma+\left(y^{2}-x^{2}\right) V_{I}(x, y)
$$

where

$$
\Sigma=\left(p_{y} x+p_{x} y\right)^{2}+\frac{1}{2}\left(p_{x}^{2}+x^{2}\right)+\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)
$$

the interaction part is always bounded

$$
-|\lambda| \leq\left(y^{2}-x^{2}\right) V_{I}(x, y) \leq|\lambda|
$$

as

$$
V_{I}(x, y)=\lambda\left[1+2\left(y^{2}+x^{2}\right)+\left(y^{2}-x^{2}\right)^{2}\right]^{-1 / 2}
$$

Another First Integral: \mathscr{E}

$$
\mathscr{E}=C-H=\Sigma+\left(y^{2}-x^{2}\right) V_{I}(x, y)
$$

where

$$
\Sigma=\left(p_{y} x+p_{x} y\right)^{2}+\frac{1}{2}\left(p_{x}^{2}+x^{2}\right)+\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)
$$

the interaction part is always bounded

$$
-|\lambda| \leq\left(y^{2}-x^{2}\right) V_{I}(x, y) \leq|\lambda|
$$

as

$$
V_{I}(x, y)=\lambda\left[1+2\left(y^{2}+x^{2}\right)+\left(y^{2}-x^{2}\right)^{2}\right]^{-1 / 2}
$$

for all times $\Sigma-|\lambda| \leq \mathscr{E} \leq \Sigma+|\lambda|$

Finiteness of motion

at initial point of time t_{a}

$$
\Sigma_{a}-|\lambda| \leq \mathscr{E} \leq \Sigma_{a}+|\lambda|
$$

Finiteness of motion

at initial point of time $t_{a} \quad \Sigma_{a}-|\lambda| \leq \mathscr{E} \leq \Sigma_{a}+|\lambda|$
at any later point in time $t_{b} \quad \Sigma_{b}-|\lambda| \leq \mathscr{E} \leq \Sigma_{b}+|\lambda|$

Finiteness of motion

at initial point of time $t_{a} \quad \Sigma_{a}-|\lambda| \leq \mathscr{E} \leq \Sigma_{a}+|\lambda|$
at any later point in time $t_{b} \quad \Sigma_{b}-|\lambda| \leq \mathscr{E} \leq \Sigma_{b}+|\lambda|$

Finiteness of motion

$\begin{array}{ll}\text { at initial point of time } t_{a} & \Sigma_{a}-|\lambda| \leq \mathscr{E} \leq \Sigma_{a}+|\lambda| \\ \text { at any later point in time } t_{b} & \Sigma_{b}-|\lambda| \leq \mathscr{E} \leq \Sigma_{b}+|\lambda|\end{array}$

Finiteness of motion

$\begin{array}{ll}\text { at initial point of time } t_{a} & \Sigma_{a}-|\lambda| \leq \mathscr{E} \leq \Sigma_{a}+|\lambda| \\ \text { at any later point in time } t_{b} & \Sigma_{b}-|\lambda| \leq \mathscr{E} \leq \Sigma_{b}+|\lambda|\end{array}$
Σ is positive definite and is confined in a stripe

$$
\Sigma_{a}-2|\lambda| \leq \Sigma_{b} \leq \Sigma_{a}+2|\lambda|
$$

Finiteness of motion

$\begin{array}{ll}\text { at initial point of time } t_{a} & \Sigma_{a}-|\lambda| \leq \mathscr{E} \leq \Sigma_{a}+|\lambda| \\ \text { at any later point in time } t_{b} & \Sigma_{b}-|\lambda| \leq \mathscr{E} \leq \Sigma_{b}+|\lambda|\end{array}$

Σ is positive definite and is confined in a stripe

$$
\Sigma_{a}-2|\lambda| \leq \Sigma_{b} \leq \Sigma_{a}+2|\lambda|
$$

Finiteness of motion

$\begin{array}{ll}\text { at initial point of time } t_{a} & \Sigma_{a}-|\lambda| \leq \mathscr{E} \leq \Sigma_{a}+|\lambda| \\ \text { at any later point in time } t_{b} & \Sigma_{b}-|\lambda| \leq \mathscr{E} \leq \Sigma_{b}+|\lambda|\end{array}$

Σ is positive definite and is confined in a stripe

$$
\Sigma_{a}-2|\lambda| \leq \Sigma_{b} \leq \Sigma_{a}+2|\lambda|
$$

Thus the trajectory is confined in a stripe, as for $\xi=\left(x, y, p_{x}, p_{y}\right)$ we have $|\xi|^{2} \leq 2 \Sigma$

Finiteness of motion

$\begin{array}{ll}\text { at initial point of time } t_{a} & \Sigma_{a}-|\lambda| \leq \mathscr{E} \leq \Sigma_{a}+|\lambda| \\ \text { at any later point in time } t_{b} & \Sigma_{b}-|\lambda| \leq \mathscr{E} \leq \Sigma_{b}+|\lambda|\end{array}$

Σ is positive definite and is confined in a stripe

$$
\Sigma_{a}-2|\lambda| \leq \Sigma_{b} \leq \Sigma_{a}+2|\lambda|
$$

Thus the trajectory is confined in a stripe, as for $\xi=\left(x, y, p_{x}, p_{y}\right)$ we have $|\xi|^{2} \leq 2 \Sigma$

System always evolves in a finite region of phase space

Lyapunov Stability

$$
\mathscr{E}=C-H=\Sigma+\left(y^{2}-x^{2}\right) V_{I}(x, y)
$$

where
$\Sigma=K^{2}+\frac{1}{2}\left(p_{x}^{2}+x^{2}\right)+\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)$

Aleksandr Mikhailovich Lyapunov
The General Problem of the Stability of Motion, Doctoral dissertation, Kharkov U. 1892

Lyapunov Stability

$$
\mathscr{E}=C-H=\Sigma+\left(y^{2}-x^{2}\right) V_{I}(x, y)
$$

where
$\Sigma=K^{2}+\frac{1}{2}\left(p_{x}^{2}+x^{2}\right)+\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)$
at the origin $\mathscr{E}(0)=0$

Lyapunov Stability

$$
\mathscr{E}=C-H=\Sigma+\left(y^{2}-x^{2}\right) V_{I}(x, y)
$$

where
$\Sigma=K^{2}+\frac{1}{2}\left(p_{x}^{2}+x^{2}\right)+\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)$

- at the origin $\mathscr{E}(0)=0$
for $\lambda\left(y^{2}-x^{2}\right)>0$ this first integral is positive, $\mathscr{E}>0$

Lyapunov Stability

$$
\mathscr{E}=C-H=\Sigma+\left(y^{2}-x^{2}\right) V_{I}(x, y)
$$

where
$\Sigma=K^{2}+\frac{1}{2}\left(p_{x}^{2}+x^{2}\right)+\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)$

for $\lambda\left(y^{2}-x^{2}\right)>0$ this first integral is positive, $\mathscr{E}>0$

The General Problem of the Stability of Motion, Doctoral dissertation, Kharkov U. 1892

O for $\lambda\left(y^{2}-x^{2}\right)<0$ this first integral
$\mathscr{E}>\Sigma+\lambda\left(y^{2}-x^{2}\right)=K^{2}+\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}\right)$

Lyapunov Stability

$$
\mathscr{E}=C-H=\Sigma+\left(y^{2}-x^{2}\right) V_{I}(x, y)
$$

where
$\Sigma=K^{2}+\frac{1}{2}\left(p_{x}^{2}+x^{2}\right)+\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)$

for $\lambda\left(y^{2}-x^{2}\right)>0$ this first integral is positive, $\mathscr{E}>0$

The General Problem of the Stability of Motion, Doctoral dissertation, Kharkov U. 1892

O for $\lambda\left(y^{2}-x^{2}\right)<0$ this first integral
$\mathscr{E}>\Sigma+\lambda\left(y^{2}-x^{2}\right)=K^{2}+\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}\right)>0$ for $|\lambda|<1 / 2$

Lyapunov Stability

$$
\mathscr{E}=C-H=\Sigma+\left(y^{2}-x^{2}\right) V_{I}(x, y)
$$

where
$\Sigma=K^{2}+\frac{1}{2}\left(p_{x}^{2}+x^{2}\right)+\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)$
\bigcirc at the origin $\mathscr{E}(0)=0$
for $\lambda\left(y^{2}-x^{2}\right)>0$ this first integral is positive,

Aleksandr Mikhailovich Lyapunov
The General Problem of the Stability of Motion, Doctoral dissertation, Kharkov U. 1892

O for $\lambda\left(y^{2}-x^{2}\right)<0$ this first integral
$\mathscr{E}>\Sigma+\lambda\left(y^{2}-x^{2}\right)=K^{2}+\frac{1}{2}\left(p_{x}^{2}+p_{y}^{2}+\omega_{x}^{2} x^{2}+\omega_{y}^{2} y^{2}\right)>0$ for $|\lambda|<1 / 2$
\mathscr{E} is a Lyapunov function so that the system is stable at the origin for $|\lambda|<1 / 2$

Does "imagination" matter for stability?

$$
H=\frac{p^{2}}{2}+\frac{1}{4} \cosh x
$$

Does "imagination" matter for stability?

$$
H=\frac{p^{2}}{2}+\frac{1}{4} \cosh x
$$

$$
p=i \bar{p} \quad x=-i \bar{x}
$$

Does "imagination" matter for stability?

$$
H=\frac{p^{2}}{2}+\frac{1}{4} \cosh x
$$

$$
p=i \bar{p} \quad x=-i \bar{x}
$$

$$
\bar{H}=-\frac{\bar{p}^{2}}{2}+\frac{1}{4} \cos \bar{x}
$$

Does "imagination" matter for stability?

New large class of

(Lagrange) stable ghosty systems

$$
H_{L V}=\frac{p_{x}^{2}}{2}-\frac{p_{y}^{2}}{2}+V_{L V}(x, y)
$$

New large class of

(Lagrange) stable ghosty systems

$$
\begin{aligned}
& H_{L V}=\frac{p_{x}^{2}}{2}-\frac{p_{y}^{2}}{2}+V_{L V}(x, y) \\
& V_{L V}=\frac{f(u)-g(v)}{u^{2}+v^{2}}
\end{aligned}
$$

New large class of

(Lagrange) stable ghosty systems

$$
\begin{aligned}
& H_{L V}=\frac{p_{x}^{2}}{2}-\frac{p_{y}^{2}}{2}+V_{L V}(x, y) \\
& V_{L V}=\frac{f(u)-g(v)}{u^{2}+v^{2}} \\
& u^{2}=\frac{1}{2}\left(r^{2}-c+\sqrt{\left(r^{2}-c\right)^{2}+4 c x^{2}}\right)
\end{aligned}
$$

New large class of

(Lagrange) stable ghosty systems

$$
\begin{aligned}
& H_{L V}=\frac{p_{x}^{2}}{2}-\frac{p_{y}^{2}}{2}+V_{L V}(x, y) \\
& V_{L V}=\frac{f(u)-g(v)}{u^{2}+v^{2}} \\
& u^{2}=\frac{1}{2}\left(r^{2}-c+\sqrt{\left(r^{2}-c\right)^{2}+4 c x^{2}}\right) \\
& v^{2}=-\frac{1}{2}\left(r^{2}-c-\sqrt{\left(r^{2}-c\right)^{2}+4 c x^{2}}\right)
\end{aligned}
$$

New large class of

(Lagrange) stable ghosty systems

$$
H_{L V}=\frac{p_{x}^{2}}{2}-\frac{p_{y}^{2}}{2}+V_{L V}(x, y)
$$

$$
V_{L V}=\frac{f(u)-g(v)}{u^{2}+v^{2}}
$$

$$
u^{2}=\frac{1}{2}\left(r^{2}-c+\sqrt{\left(r^{2}-c\right)^{2}+4 c x^{2}}\right)
$$

$$
v^{2}=-\frac{1}{2}\left(r^{2}-c-\sqrt{\left(r^{2}-c\right)^{2}+4 c x^{2}}\right)
$$

$$
r^{2}=x^{2}-y^{2}
$$

New large class of

(Lagrange) stable ghosty systems

$$
H_{L V}=\frac{p_{x}^{2}}{2}-\frac{p_{y}^{2}}{2}+V_{L V}(x, y)
$$

Condition for stability:

$$
c>0
$$

$$
V_{L V}=\frac{f(u)-g(v)}{u^{2}+v^{2}}
$$

$$
u^{2}=\frac{1}{2}\left(r^{2}-c+\sqrt{\left(r^{2}-c\right)^{2}+4 c x^{2}}\right)
$$

$$
v^{2}=-\frac{1}{2}\left(r^{2}-c-\sqrt{\left(r^{2}-c\right)^{2}+4 c x^{2}}\right)
$$

$$
r^{2}=x^{2}-y^{2}
$$

what is the black magic?

what is the black magic?

Another first Integral

what is the black magic?

Another first Integral

$$
J_{L V}=\left(x p_{y}+y p_{x}\right)^{2}+\frac{c}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\mathscr{U}
$$

what is the black magic?

Another first Integral

$$
\begin{aligned}
& J_{L V}=\left(x p_{y}+y p_{x}\right)^{2}+\frac{c}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\mathscr{U} \\
& \mathscr{U}(u, v)=\frac{\left(2 u^{2}+c\right) g(v)+\left(2 v^{2}-c\right) f(u)}{u^{2}+v^{2}}
\end{aligned}
$$

what is the black magic?

Another first Integral

"Energy"

$$
\begin{aligned}
& J_{L V}=\left(x p_{y}+y p_{x}\right)^{2}+\frac{c}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\mathscr{U} \\
& \mathscr{U}(u, v)=\frac{\left(2 u^{2}+c\right) g(v)+\left(2 v^{2}-c\right) f(u)}{u^{2}+v^{2}}
\end{aligned}
$$

what is the black magic?

Another first Integral

$$
\begin{aligned}
& \text { "Energy" }{ }_{L V}={ }^{\left.\left(x p_{y}+y p_{x}\right)^{2}+\frac{c}{2}\left(p_{x}^{2}+p_{y}^{2}\right)\right)+\mathscr{U}} \\
& \mathscr{U}(u, v)=\frac{\left(2 u^{2}+c\right) g(v)+\left(2 v^{2}-c\right) f(u)}{u^{2}+v^{2}}
\end{aligned}
$$

what is the black magic?

Another fírst Integral

"Energy" "Positive Definite Kinetic Energy" "Potential Energy"
$J_{L V}=\left(x p_{y}+y p_{x}\right)^{2}+\frac{c}{2}\left(p_{x}^{2}+p_{y}^{2}\right)+\mathscr{U}$

$$
\mathscr{U}(u, v)=\frac{\left(2 u^{2}+c\right) g(v)+\left(2 v^{2}-c\right) f(u)}{u^{2}+v^{2}}
$$

Stable ghost with Polynomial Interaction

$$
V_{L V}^{(4)}(x, y)=\frac{\omega_{x}^{2}}{2} x^{2}-\frac{\omega_{y}^{2}}{2} y^{2}+\frac{1}{\tilde{c}}\left(\frac{\omega_{x}^{2}}{2}-\frac{\omega_{y}^{2}}{2}\right)\left(x^{2}-y^{2}\right)^{2}+c \mathscr{C}_{4}\left(x^{4}-y^{4}\right)+\mathscr{C}_{4}\left(x^{2}-y^{2}\right)^{3}
$$

Stable ghost with Polynomial Interaction

$$
V_{L V}^{(4)}(x, y)=\frac{\omega_{x}^{2}}{2} x^{2}-\frac{\omega_{y}^{2}}{2} y^{2}+\frac{1}{\tilde{c}}\left(\frac{\omega_{x}^{2}}{2}-\frac{\omega_{y}^{2}}{2}\right)\left(x^{2}-y^{2}\right)^{2}+c \mathscr{C}_{4}\left(x^{4}-y^{4}\right)+\mathscr{C}_{4}\left(x^{2}-y^{2}\right)^{3}
$$

Stable ghost with Polynomial Interaction

$$
V_{L V}^{(4)}(x, y)=\frac{\omega_{x}^{2}}{2} x^{2}-\frac{\omega_{y}^{2}}{2} y^{2}+\frac{1}{\tilde{c}}\left(\frac{\omega_{x}^{2}}{2}-\frac{\omega_{y}^{2}}{2}\right)\left(x^{2}-y^{2}\right)^{2}+c \mathscr{C}_{4}\left(x^{4}-y^{4}\right)+\mathscr{C}_{4}\left(x^{2}-y^{2}\right)^{3}
$$

Kolmogorov-Arnold-Moser (KAM) theorem

Small structural changes do not jeopardise the stability and finiteness of motion

Why have not we seen

 such systems so far in nature?

Ihanks a lot for attention!

